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Background. Networks are sets of nodes and edges (graphs)
that model real-world systems.

Social networks Currency
nodes are people V’SA nodes are accounts
edges are friendships edges are transactions

Brains . Electrical grid
nodes are neurons ' nodes are power plants
edges are synapses # edges are transmission lines

Tim Meko, Washington Post



Networks are defined by nodes and edges,
SO we design our
analysis, models, and algorithms
IN terms of nodes and edges.



Background. Networks are sets of nodes and edges (graphs)
that model real-world systems.

Key insight [FlakeOO; Newman04,06; many others.. .].

Networks for real-world systems have modules, clusters, communities.

« We want algorithms to uncover the clusters automatically.

* Main idea has been to optimize metrics involving the number of nodes
and edges in a cluster. Conductance, modularity, density, ratio cut, ...

Brain network, de Reus et al., RSTB, 2014.
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Background. Networks are sets of nodes and edges (graphs)
that model real-world systems.

Key insight [Milo+02].

Netvvqus quelling real-world systems / \ / \ >—><

contain certain small subgraphs patterns way DR .
more frequently than expected.

Triangles in social Bi-directed length-2 paths Signed feed-forward loops
relationships. in brain networks. IN genetic transcription.
/\ /™ NN
— > >
[Simmel 1908; [Sporns-Kotter 2004, |
Rapoport 1953: Sporns+ 2007; Honey+ 2007 ] Mangan+ 2003; Alon 2007]

Granovetter 1973]

We call these small subgraph patterns motifs. .



Motifs are the fundamental units of
complex networks.

We should design our
clustering algorithms around motifs.




Higher-order graph clustering is our technique
for finding clusters based on motifs

Network

N\ N

«— “— Different motits give different clusters.



Higher-order graph clustering
Main points and overview

= \We will generalize spectral clustering, a classical technigue to find
clusters or communities in a graph, to use motifs as the fundamental
unit to partition.

» Based on a higher-order (motif-based) conductance metric that
generalizes the traditional conductance.

= Comes with theoretical guarantees.

= We'll first briefly review how spectral clustering works.
* Then we’ll see how to adapt it to work with network motifs.
* Then we’ll see the impact of this approach on various real-world data.



Background. Spectral clustering is a classic technique to
partition graphs by looking at eigenvectors.

[Fiedler 1973, many more...]

Laplacian Eigenvector(s)

i N}

Cluster



Background. The (normalized) graph Laplacian.

Recall from lecture that A is the adjacency matrix.
A; = 1if (i, J) is an edge in the graph, O otherwise

Our fundamental matrices...
D = diag(A1) Diagonal degree matrix (1 is the vector of all ones).

[ =D —A The graph Laplacian
[ — D—1/2] p—1/2 The normalized graph Laplacian
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Background. Spectral clustering works based on conductance

Conductance is one of the most important cluster quality scores [SchaefferO7]
used in Markov chain theory, spectral clustering, bioinformatics, vision, etc.

The conductance of a set of vertices S is the ratio of
edges leaving to total edges

gb(S) _ CU’[(S) _ (edges leaving S)

min(vol(S), vol(S)) (edge end points in S)

small conductance < good cluster

11




Background. Conductance and expansion are similar.

Conductance. Expansion.
cut(S (edges leaving S) CUT(S) (edges leaving S)
o(S) = — ) L g(e) = o)
min(vol(S), vol(S)) (edge end points in S) min(|S], |S]) (nodes in )
Normalized graph Laplacian. Graph Laplacian.
D = diag(A1) D = diag(A1)

L=D""3D-AD 2 L =D—A
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Background. Spectral clustering has theoretical guarantees
[Cheeger70, Alon-Milman85]

Finding the smallest conductance set is NP-hard. ®

= (Cheeger realized the eigenvalues of the Laplacian
provided surface area to volume bounds in manifolds.

= Alon and Milman independently realized the same
thing for a graph (conductance)!

Eigenvalues of the Laplacian £ D = diag(A1)
O=)\1§)\2§§>\n§2 EZD_1/2(D—A)D_1/2
o, = set of smallest conductance

Laplacian



Background. The sweep cut algorithm realizes the guarantee

[Mihail89, Chung92]
We can find a set S that achieves the Cheeger
bound.

1. Compute the eigenvector z associated with A,
and scale to f = D2z

2. Sort the vertices by their values in f:
04, O, ..., O

3. LetS,={0o, ..., 0} and compute the
conductance of ¢(S,) of each S..

4. Pick the set S, with minimum conductance.

?(Sm) < 2V
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Background. The sweep cut visualized

Mihail89, Chung92]
() cut(S) “

= . e //’
min(vol(S), vol(S)) Sy, /ﬁ(‘ '“\
1 o coe I ‘
0.8}
E,)E 0.6
<
0.4;
0.2
O L )
0 20 40

15



Spectral clustering is theoretically justified for finding
edge-based clusters in undirected, simple graphs.

We want to cluster with richer data
Motifs that may lbe directed, signed, colored, feature-valued, etc.

Y Signed feed-forward loops in genetic
+ o transcription [Mangan+03]
Gene X activates transcription in gene ',
Gene X suppresses transcription in gene Z.
X >z Gene Y suppresses transcription in gene Z.




Our contributions SClence

Benson-Gleich-Leskovec, Science, 2016. News  Jownals  Topies Careers

2 Immunology  Science Robotics cience Signaling

= A generalized conductance metric for motifs. ieher-order organization of

complex networks

= A new spectral clustering algorithm to minimize At Beror,DaidF Gt ko
the generalized conductance. o s
= AND an associated motif Cheeger inequality
guarantee. . o
» Naturally handles directed, signed, colored, - /‘ \" >< %V
weighted, and combinations of motifs. N o2 o

» Scales to networks with billions of edges.

= Applications in ecology, biology, and
transportation.
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How do we -

ils

based or

d clusters

g

notifs?



Motif-based conductance

M = triangle motif /
Need new notions of cut and volume IS

cut(S) = #(edges cut) 874_ m) cuty(S) = #(motifs cut) /
S /

S
vol(S) = #(edge end points in S) mmp voly,(S) = #(motif end points in

0w Wi

)

cut(S) cuty(S)
S) = 5) = S
M o o) T minwou(s), vou(3)




Motif-based conductance

motifs cut _ 1

A |

motif volume 8




Higher-order clustering

Problem Given a motif M and a graph G, we want to
find a set of nodes S that minimizes motif conductance

This is NP-hard. [Wagner-Wagner93]

Our solution. Generalize spectral clustering for motifs

1. Form new weighted, undirected graph WM based on M and G
2. Compute Fiedler vector of Laplacian matrix of WM [Fiedler73, Alon-Milman85]
3. Use “sweep cut” procedure to output clusters [Mihail89, Chung92]

Theorem (motif Cheeger inequality)
resulting clusters will obtain near optimal motif conductance

21



Motif-based spectral clustering
Step 1. Given directed graph G and motif M, form a weighted graph WM,

Wi,(-M) = #{instances of motif M that contain nodes / and j}

22



Motif-based spectral clustering
Step 1. Given directed graph G and motif M, form a weighted graph W™,

Key insight

Classical spectral clustering on
weighted graph WM) finds clusters
of low motif conductance.

L\ motifs cut
motif volume

Pm(S) =

W™ = #{instances of motif M that contain nodes i and j}



Motif-based spectral clustering

Step 2. Compute the eigenvector fM associated with A, of the
normalized Laplacian matrix of WM

D = diag(W")1) M)
£M) — p=1/2(p — pM)p—1/2 © 0 o |
L™z = Roz © o el
=07 o |

Takes roughly O(# edges) time.
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Motif-based spectral clustering

Step 3 (motif sweep cut) [Mihail89,Chung92]
= Sort nodes by values in fM — o, 0,, ...0,.
= Pickset S, = {o,, ..., 0} with smallest motif conductance.

Best higher-order cluster

1
)
: ©
0.8 |
©
e
O
S 06
O
-
O
| -
“—
O 02F
S ®
O 1 1 1 1 1 1 1 1 ]
1 2 3 4 5 6 7 8 9 10
Sets S,

G =(4,51,3,2,7,6,9,8,10) "



Motif Cheeger inequality

Theorem If the motif has three
nodes, then the sweep procedure  Key Proof Step

on the weighted graph finds a set  M(G) = {instances of M in G}
S of nodes for which cuty(S, G) = Z Indicator[x;, x;, Xx not the same]

{i.,k;eM(G)

= T(XF + XF + XE — XiXj — XiXk — XiXg)

¢M ( S) S 2 ¢7\<ﬂ = quadratijc in X

For 4+ nodes, need slightly different
notion of conductance.



Applications

1. We do not know the motif of interest.
food webs and new applications

2. We know the motif of interest from domain knowledge.
yeast transcription regulation networks, connectome, social networks

3. We seek richer information from our data.
transportation networks and new applications



Application T

We do not know the motif of interest.



Application 1. Food webs

Florida bay food web
= Nodes are species

» Edges represent carbon exchange
| —jIfjeats|
= Motifs represent energy flow patterns

® ® Re 3
/ \ / \ http://marinebio.org/oceans/marine-zones/
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Application 1. Food webs

Which motif clusters the food web?

Our approach

= Run motif spectral clustering for all 3-node
motifs as well as for just edges.

= Examine the sweep profile to see which motif
gives the best clusters.



Application 1. Food webs

Our finding. Motif M ~ ol . :
: vy o -
organizes the food web < os} . :
: - . .
into good clusters. o O7F . .
8 06 L edge -
S :
o o g 0.5F /o\ s : .,
O I | | -
@ - 04} o— o : g
edge O/W\O 0/<|\/|—>\0 8 o3l IVI.5 . . g _: )
5 6 _,8 0.2 EEmw /\ : :‘. :v“tﬂ
= 0.1 .“'V'—e{’ - ,','~,.,?’ oy
10° 10" 102
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Application 1. Food webs

Pelagic fishes PRy AoV Benthic Fishes _ Sponge Micronutrient
and benthic "¢ Zooplankion Acartia Tonsa sources
Detritivorous Clown Goby
. \ ® Oithona nana
pl’ey Sardines ~——___Other F’elag‘ic Fishes Crabs Lizardfish ~/ Code Goby
N \\\V‘» 7 Paracalanus
Silverside .(// ‘( “I\Herbivorous Shrim ) Eel Callinectus sapidus Water Flagellates
T ‘ - > Water POC aterriag |
- ’ Ve Motif Mg reveals
Predatory Crabs o Bhda ® Water Cilitaes \ |
7 Needleflsh )
\\ f v aquatic layers
killifish \" A Syr|ngod|um —8 Other Copepoda ‘
Anchovy | /7 Predatory Shrlmp
Goldspotted @ ’ =~ Epiphytes Meroplankton \
killifish i
i |:. i 7 A § ’, LN VH\ali) d\ule Predatory Gastropods
gtsheers emersal !\_ Suspension \\ Benthic POC ﬁ.\ 0= >0
\\\.' Feedlng Polych “’U vl Echlnoderma Y
N, IR \ "% Detritivorous 6
Brotalu 5./'/0 Predatory \ / Gastropods 0
Polych
\ \( /‘/‘ olychaetes \\ Otherggld/andae @ Drift Algae 610A) aCCU raCy VS.
. S v .
Blennies 01/¥Fla‘t‘fish Macrgnt;\os \ Benthlc Ciliates 48 A) Wl'th edge_
. ' Isopods - \
Benthic macro- 1\ . N\ _ K Ml based methods
. Detritivorous etrmvorous >\
|nvert3brates Polychaetes Amphlpods

/Benthlc

\J "® Benthic
Melofauna

Benthic Crustaceans
32



Application 2

We know the motif of interest
from domain knowledge.



Application 2. Yeast transcription regulation networks

* Nodes are groups of genes
» Edge/ — j means/ regulates transcription to

= Sign +/ - denotes activation / suppression
= Coherent feedforward loops encode biological function
[Mangan+03, Alon07]

. +
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Application 2. Yeast transcription regulation networks

Nitrogen utilization and

glutamese synthetase i Clustering based on coherent
i Phospholipid biosynthesis feedfOrward |OOpS iden’[ifieS
‘ functions studied individually
oeememes by biologists  [Mangan+03]
il o 97% accuracy Vs.
68-82% with edge-based methods

Leucine and branched 3
amino acid blosynthe5|s = N /4 \ /4 \
7ol IPT1

Drug resistance

CHO2

DAL80_GZF3

Metionene MET17

biosynthesis F 1, i\ \ '
! Elya “GCN4 < ILV1 { YOR1 w
PDR1__» HXT11
LEU3 ‘ ‘

ILV5 ‘ PDR5 YRR1
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Application 2. Yeast transcription regulation networks

Structure of the found modules
(all edge signs are positive)

Drug resistance

L N
:‘ PDR3
4

v‘ YRR1
v

PDR1

/s

Cell cycle and mating type switch

CLN1 Q
~© SWI4/SWI6
i’
CLN2 Q
A‘
:@ SPT16
o @
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Application 3

We seek richer information
from our data.



Application 3. Transportation networks

= North American air
transport network.

= Nodes are cites.

= /| —If you can travel

from /to/In < 8 hours.
IFrey-DueckO/]
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Application 3. Transportation networks
Weighted adjacency matrix already reveals hub-like structure

Important motifs from literature
[Rosvall+14]

AN AN
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Application 3. Transportation networks

West coast non-hubs

d - i

T Primary spectral coordinate
East coast non-hubs

MOTIF SPECTRAL EMBEDDING

9]eulplo09 [eJjoads Alepuooeg

Atlanta, the top hub, is
next to Salina, a non-hub.

Phoenix, o . :"'.'.'; - .
Denver, CO- A - o Atlantic City, NJ
Dallas, TX 1 ; g i
New York, j,;,—», 3

EDGE SPECTRAL EMBEDDING



Application 3.

3e+06 -

2e+06 -

1e+06 -

Metropolitan population

0e+00-

1.0 0.5

Primary spectral coordinate

Transportation networks

0.0

0.5

Longitude

Monterey, CA_ -~

NBW York,

. . ver
~ ranc sco, CA

N Charl%?tle
B Atlanta, GA

0.5 1.0

Secondary spectral coordinate
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Applications 4, 5 & 6

Just some extra fun things
we found.



Application 4. Anomaly detection in social networks

The up-linked triangle finds an
anomalous cluster in Twitter.

pho&bali hot h
photoadelalde : P °&?°
ane
photobali Tweets Tweets & replies photomadfld gb : phOtOb?nQKOK
@photobali hotobali <photobal 2009 2
Shars o photes of Bl Make your n AT BemieT @photol ball After @ hard (holi)day, all | want to go is the photo&niami phOtO ﬂey E 'Oh_% PhQ%rwm Fntomumbai
photos easy to find. Add @photobali to Offic http //twitpic.com/zin - . - rn
y;ur pic twits. ph Ot@eflln : phOtOggl'dcoaSt
Bali, Indonesia £ .
(5 Joined January 2009 n zr:;/h;?/:l:yo‘;h:‘i?b;(‘;qi\;::/r‘ezgosreat photo of Bali, don't forget to share it! phOtouels"‘kl phatom bourne p'\Otocow nhagen
Add @photobali to your pic tweet. photeoslo photoq-‘ icago
photqtokyo photongwdelhi
photohgngkong photogthens
photggairo p:ott‘-"::QC khollm
photoshanghai B
OOOOOOOOO & (2o romn photo ok photapeijing
photoseattle .
g:‘°tonewyork @photonewyork :Sﬂ‘ eeeeeeeeeee bhOtoyan ce h phOto? Stral la
hotonewyork . a
[] Joined December 2008 phOtO' e‘u Salem p Otoa "Ster am
) photous
shodrome 4 Photolpndon &
photojoburg

Anomalous cluster in the 1.4B edge Twitter graph.

All nodes are holding accounts for a company, and the orange nodes
have incomplete profiles. o



Application 5. Hierarchical structure in web graphs

QOO I

o The “uplinked triangle” has
Periphery > fhdong been observed to occur much

groups link to more frequently than in random

each other. graph models. [Milo+02]
e . r— Core group
Kioke o with large
/ : IN-degree.
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Application 6. Nictation control in a neural network

Nicatation — standing on a tail and waving \
Start point

End point

We find the control
mechanism that explains
nictation based on the
bi-fan motif (Milo et al.
found it over-expressed)

o0




Recap. Higher-order graph clustering

» Generalization of graph clustering to higher-order structures
(motifs) through a new objective (motif conductance).

» Generalizing old ideas from spectral graph theory admits a new
algorithm and a motif Cheeger inequality.

= Applications in ecology, biology, transportation, social networks,
the Web, and neuroscience.

Best higher-order cluster

Nodes i ‘ e o
77777777777 ‘ ‘
MMO311100000T (
283011111000 k 6
p ‘

5 0000000 [

(0 1T00001110 > ﬂ

710100010000 :

gl0000D010021 = ° ®

90000010201 ‘
/ 0/l0 000000110 (

o= (4,51,3,2,7,6,9,8,10) 46




Higher-order clustering

Benson, Gleich, & Leskovec, Higher-order organization of complex networks, Science, 2016
Code + data http://snap.stanford.edu/higher-order

Key takeaways Phase Transfer Entropy
- Organizing graphs aCCOrding dlrected orain networks

Fig. 4 The two clusters (in red

to motifs reveals new insights into data  mmameres

based clustering algorithm
after the +0 sparsification
based on the motif 78.

= Simple & scalable framework with
theoretical guarantees

= Impact in the community /

- Motif-Based Analysis of Effective Connectivity in Brain Networks, Meier et al., 2016
- Motit correlation clustering Li et al., 2016
- Network analytics in the age of big data, Przulj & Malod-Dognin, 2016
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Intermission...
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Timestamped connections are everywhere

& |
%%%%%%%
= -
Private communication Biology
e-mall, phone calls, text cell signaling

messages, Instant messages

I=] stackoverflow 'i

Public communication  Technical infrastructure ~ Payments

Q&A forums, Facebook packets over the Internet, credit card transactions,
walls, Wikipedia edits messages over supercomputer  Bitcoin, Venmo



Current methods for analyzing temporal networks

1. Models for network growth
Growth of academic collaborations, Internet infrastructure, etc. [Leskovec+07]

2. Sequence of snapshot aggregates
Daily phone call graph [Araujo+14], Per-year co-authorship [Dunlavy+2010]

Opportunity these methods do not capture the pulse of
temporal networks that are constantly in motion.



How can we generalize motifs for

temporal networks to provide
a new type of analysis?




Temporal networks are lists of directed edges
with timestamps

™ O O H O v OV O D

O © O O O T o 99 O

14s
15s
17s
25s
28S
30s
31s
32S
35S

2{ 15s, 32s

25 31s

17s, 28s, 30s, 35s
a 14s

many timestamps between the same pair of nodes!

Timestamps are fine-grained
1 second resolution and O(years) span



Temporal network motifs

Paranjape, Benson, & Leskovec, WSDM, 2017

a d 14s
C a 15s

O =10s
a C 17s
a b 258 @%

32s

a C 28s 255 285
a C 30s %/
C d 31s
C a 325
a C 358

Temporal network motif

1. Directed multigraph
with k edges

2. Edge ordering

3. Maximum time span 6

Motif instance k temporal
edges that match the pattern
that all occur within & time

Wrong order!
(c, a) before (a, ¢)
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Algorithmic challenge of temporal motifs

Given a temporal network and a temporal network motif,

>k 15s, 325% s 3 !
255 31s 1 )
17s, 28s, 30s, 355 %/
a 14s k@ o0 =10s

count the number of motif instances in the network.

3 the 3 instances

R T

25s 25s 31s

,?285 ,?305 ,?325
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Summary of new algorithms

In a network with m temporal edges and | static triangles
and a motif with kK temporal edges.

1. General algorithm for any motif.
faster than O(m*) brute force approach

.q 1,3

2-nodes, k temporal edges. Ok m),

linear time in size of data for const. k 2\\
Optimized algorithms for special cases e &
2. 3 nodes, 3 temporal edges, stars. O(m) 1’2\'/3

linear time in size of data

3. 3 nodes, 3 temporal edges, triangles. O(T"°m) 'r _?
faster than previous state-of-the-art O(Tm)
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New algorithms let us analyze large datasets

Time to count 3-edge motifs (Phonecall-ME)

14000-

—~ —k— 2-node

n 12000—

2 —B— 3-node stars
Processing a phone call S 10000- -+ tianges

' ‘1 £ ota

network with 2 billion 0 500"
temporal edges takes justa =
few hours (single threaded). & ™

2 20004

) 0- h———h——Hh——— —k

| | | | | | |
250 500 750 1000 1250 1500 1750 2000

Number of edges (millions)
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Temporal motifs expose one-to-one and
one-to-many behavior in communication systems

& =1 hour
. LI
L L3 2
\\ FBWall \./
SMS-A
T, _ “ 7
2,3 Email-Eu 1 23
X\ CollegeMsg \./
Ph |I-E
K‘;LZ onecall-Eu ‘kl,z 3,‘
\\ 0.5 0.0 0.0 05 \v4

Fraction of counts Fraction of counts

57



Temporal network motifs

Paranjape, Benson, & Leskovec, Motifs in Temporal Networks, WSDM, 2017.
Code + data http://snap.stanford.edu/temporal-motifs

Key takeaways

» [emporal network motifs are a Qrz—?
simple and effective way to analyze L
temporal networks, a data type for \./
which we have few tools.

* Requires algorithmic insights to scale
to large networks.
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