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Brains
nodes are neurons
edges are synapses

Social networks
nodes are people
edges are friendships

Electrical grid
nodes are power plants
edges are transmission lines

Tim Meko, Washington Post

Currency
nodes are accounts
edges are transactions

Background. Networks are sets of nodes and edges (graphs) 
that model real-world systems.
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Networks are defined by nodes and edges,
so we design our

analysis, models, and algorithms
in terms of nodes and edges. 
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Key insight [Flake00; Newman04,06; many others…].
Networks for real-world systems have modules, clusters, communities.
• We want algorithms to uncover the clusters automatically.
• Main idea has been to optimize metrics involving the number of nodes 

and edges in a cluster.  Conductance, modularity, density, ratio cut, …

Co-author network
Brain network, de Reus et al., RSTB, 2014.

Background. Networks are sets of nodes and edges (graphs) 
that model real-world systems.
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Key insight [Milo+02].
Networks modelling real-world systems
contain certain small subgraphs patterns way 
more frequently than expected.

[Mangan+ 2003; Alon 2007]

Signed feed-forward loops 
in genetic transcription.A C

B

D

Figure S8: Higher-order organization of the S. cerevisiae transcriptional regulation network.
A: The four higher-order structures used by our higher-order clustering method, which can
model signed motifs. These are coherent feedfoward loop motifs, which act as sign-sensitive
delay elements in transcriptional regulation networks (46). The edge signs refer to activation
(positive) or repression (negative). B: Six higher-order clusters revealed by the motifs in (A).
Clusters show functional modules consisting of several motifs (coherent feedforward loops),
which were previously studied individually (45). The higher-order clustering framework identi-
fies the functional modules with higher accuracy (97%) than existing methods (68–82%). C–D:
Two higher-order clusters from (B). In these clusters, all edges have positive sign. The func-
tionality of the motifs in the modules correspond to drug resistance (C) or cell cycle and mating
type match (D). The clustering suggests that coherent feedforward loops function together as a
single processing unit rather than as independent elements.
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(positive) or repression (negative). B: Six higher-order clusters revealed by the motifs in (A).
Clusters show functional modules consisting of several motifs (coherent feedforward loops),
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fies the functional modules with higher accuracy (97%) than existing methods (68–82%). C–D:
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).
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Triangles in social 
relationships.

[Simmel 1908; 
Rapoport 1953; 
Granovetter 1973]

Bi-directed length-2 paths 
in brain networks.

[Sporns-Kötter 2004;
Sporns+ 2007; Honey+ 2007]

We call these small subgraph patterns motifs.

Background. Networks are sets of nodes and edges (graphs) 
that model real-world systems.
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Motifs are the fundamental units of 
complex networks.

We should design our 
clustering algorithms around motifs.



Network

Motif

Different motifs give different clusters.

7

Higher-order graph clustering is our technique 
for finding clusters based on motifs
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§ We will generalize spectral clustering, a classical technique to find 
clusters or communities in a graph, to use motifs as the fundamental 
unit to partition.

§ Based on a higher-order (motif-based) conductance metric that 
generalizes the traditional conductance.

§ Comes with theoretical guarantees.

§ We’ll first briefly review how spectral clustering works.

§ Then we’ll see how to adapt it to work with network motifs.

§ Then we’ll see the impact of this approach on various real-world data.

Higher-order graph clustering
Main points and overview



Graph Laplacian Eigenvector(s)
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Background. Spectral clustering is a classic technique to 
partition graphs by looking at eigenvectors.

Cluster

[Fiedler 1973, many more…]
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Background. The (normalized) graph Laplacian.
Recall from lecture that A is the adjacency matrix.
Aij = 1 if (i, j) is an edge in the graph, 0 otherwise

D = diag(A1)

L = D− A
L = D−1=2LD−1=2

Diagonal degree matrix (1 is the vector of all ones).

The graph Laplacian

The normalized graph Laplacian

Our fundamental matrices…



Conductance is one of the most important cluster quality scores [Schaeffer07]
used in Markov chain theory, spectral clustering, bioinformatics, vision, etc. 

The conductance of a set of vertices S is the ratio of 
edges leaving to total edges

small conductance ó good cluster

(edges leaving S)

(edge end points in S)
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S

cut(S) = 7

vol(S) = 85

vol(S̄) = 151

ffi(S) = 7/85

Background. Spectral clustering works based on conductance

S

�(S) =
cut(S)

min(vol(S), vol(S))



(edges leaving S)

(edge end points in S)
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Background. Conductance and expansion are similar.

α(S) = cut(S)
min(|S|; |S̄|)φ(S) = cut(S)

min(vol(S); vol(S̄))
(edges leaving S)

(nodes in S)

Conductance. Expansion.

D = diag(A1)

L = D− A
D = diag(A1)

L = D−1=2(D− A)D−1=2

Normalized graph Laplacian. Graph Laplacian.



Cheeger Inequality

Finding the smallest conductance set is NP-hard. L

§ Cheeger realized the eigenvalues of the Laplacian 
provided surface area to volume bounds in manifolds.

§ Alon and Milman independently realized the same 
thing for a graph (conductance)!

Laplacian

�2
⇤/2  �2  2�⇤

0 = �1  �2  ...  �n  2
�⇤ = set of smallest conductance
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Background. Spectral clustering has theoretical guarantees
[Cheeger70, Alon-Milman85]

Eigenvalues of the Laplacian L D = diag(A1)

L = D−1=2(D− A)D−1=2



We can find a set S that achieves the Cheeger
bound. 

1. Compute the eigenvector z associated with λ2
and scale to f = D-1/2z

2. Sort the vertices by their values in f:
σ1, σ2, …, σn

3. Let Sr = {σ1, …, σr} and compute the 
conductance of φ(Sr) of each Sr.

4. Pick the set Sm with minimum conductance.
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Background. The sweep cut algorithm realizes the guarantee
[Mihail89, Chung92]
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Background. The sweep cut visualized
[Mihail89, Chung92]

Sr

�(S) =
cut(S)

min(vol(S), vol(S))



We want to cluster with richer data
Motifs that may be directed, signed, colored, feature-valued, etc. 
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Spectral clustering is theoretically justified for finding 
edge-based clusters in undirected, simple graphs.

Signed feed-forward loops in genetic 
transcription  [Mangan+03]

Gene X activates transcription in gene Y.
Gene X suppresses transcription in gene Z.
Gene Y suppresses transcription in gene Z.

A C

B

D

Figure S8: Higher-order organization of the S. cerevisiae transcriptional regulation network.
A: The four higher-order structures used by our higher-order clustering method, which can
model signed motifs. These are coherent feedfoward loop motifs, which act as sign-sensitive
delay elements in transcriptional regulation networks (46). The edge signs refer to activation
(positive) or repression (negative). B: Six higher-order clusters revealed by the motifs in (A).
Clusters show functional modules consisting of several motifs (coherent feedforward loops),
which were previously studied individually (45). The higher-order clustering framework identi-
fies the functional modules with higher accuracy (97%) than existing methods (68–82%). C–D:
Two higher-order clusters from (B). In these clusters, all edges have positive sign. The func-
tionality of the motifs in the modules correspond to drug resistance (C) or cell cycle and mating
type match (D). The clustering suggests that coherent feedforward loops function together as a
single processing unit rather than as independent elements.

S48
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Benson-Gleich-Leskovec, Science, 2016.
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Our contributions

§ A generalized conductance metric for motifs.

§ A new spectral clustering algorithm to minimize 
the generalized conductance.

§ AND an associated motif Cheeger inequality 
guarantee.

§ Naturally handles directed, signed, colored, 
weighted, and combinations of motifs.

§ Scales to networks with billions of edges.

§ Applications in ecology, biology, and 
transportation.

A C

B

D

Figure S8: Higher-order organization of the S. cerevisiae transcriptional regulation network.
A: The four higher-order structures used by our higher-order clustering method, which can
model signed motifs. These are coherent feedfoward loop motifs, which act as sign-sensitive
delay elements in transcriptional regulation networks (46). The edge signs refer to activation
(positive) or repression (negative). B: Six higher-order clusters revealed by the motifs in (A).
Clusters show functional modules consisting of several motifs (coherent feedforward loops),
which were previously studied individually (45). The higher-order clustering framework identi-
fies the functional modules with higher accuracy (97%) than existing methods (68–82%). C–D:
Two higher-order clusters from (B). In these clusters, all edges have positive sign. The func-
tionality of the motifs in the modules correspond to drug resistance (C) or cell cycle and mating
type match (D). The clustering suggests that coherent feedforward loops function together as a
single processing unit rather than as independent elements.
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How do we find clusters 
based on motifs?



Motif-based conductance

Need new notions of cut and volume

19

φM (S) =
cutM (S)

min(volM (S), volM (S))
�(S) =

cut(S)

min(vol(S), vol(S))

vol(S) = #(edge end points in S)

cut(S) = #(edges cut) cutM (S) = #(motifs cut)

volM (S) = #(motif end points in S)

S

S

S

S S

M = triangle motif



Motif-based conductance

Motif M

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7

�M (S) =
motifs cut

motif volume
=

1
8
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Problem Given a motif M and a graph G, we want to
find a set of nodes S that minimizes motif conductance

This is NP-hard.  [Wagner-Wagner93]

Our solution.  Generalize spectral clustering for motifs 

1. Form new weighted, undirected graph W(M) based on M and G
2. Compute Fiedler vector of Laplacian matrix of W(M) [Fiedler73, Alon-Milman85]

3. Use “sweep cut” procedure to output clusters [Mihail89, Chung92]

Theorem (motif Cheeger inequality)
resulting clusters will obtain near optimal motif conductance

21

Higher-order clustering



Motif-based spectral clustering
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W (M)
ij = #{instances of motif M that contain nodes i and j}

motif M

Step 1. Given directed graph G and motif M, form a weighted graph W(M).

graph G
weighted graph W(M)

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).
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Key insight
Classical spectral clustering on 
weighted graph W(M) finds clusters 
of low motif conductance.

�M (S) =
motifs cut

motif volume
=

1
10

Figure 1: Higher-order network structures and the higher-order network clustering
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Motif-based spectral clustering
Step 1. Given directed graph G and motif M, form a weighted graph W(M).

motif M

W (M)
ij = #{instances of motif M that contain nodes i and j}

W(M)



Motif-based spectral clustering
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Step 2. Compute the eigenvector f(M) associated with λ2 of the
normalized Laplacian matrix of W(M)
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Takes roughly O(# edges) time.

f(M)D = diag(W(M)1)

L(M) = D−1=2(D−W(M))D−1=2

L(M)z = λ2z
f(M) = D−1=2z



Motif-based spectral clustering
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Step 3 (motif sweep cut)  [Mihail89,Chung92]
§ Sort nodes by values in f(M) → σ1, σ2, …σn.
§ Pick set Sr = {σ1, …, σr} with smallest motif conductance.
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Motif Cheeger inequality
Theorem If the motif has three 
nodes, then the sweep procedure 
on the weighted graph finds a set 
S of nodes for which

For 4+ nodes, need slightly different 
notion of conductance.
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M(G) = {instances of M in G}

Key Proof Step

cutM (S, G) =
X

{i ,j ,k}2M(G)

Indicator[xi , xj , xk not the same]

= 1
4 (x2

i + x2
j + x2

k � xixj � xjxk � xixk )

= quadratic in x�M (S) � 2
�

��
M



Applications
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1. We do not know the motif of interest.
food webs and new applications

2. We know the motif of interest from domain knowledge.
yeast transcription regulation networks, connectome, social networks

3. We seek richer information from our data.
transportation networks and new applications 
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Application 1

We do not know the motif of interest.



Application 1. Food webs

Florida bay food web

§ Nodes are species

§ Edges represent carbon exchange
i→ j if j eats i

§ Motifs represent energy flow patterns

29

http://marinebio.org/oceans/marine-zones/

M6M5



Application 1. Food webs

Which motif clusters the food web?

Our approach

§ Run motif spectral clustering for all 3-node 
motifs as well as for just edges.

§ Examine the sweep profile to see which motif 
gives the best clusters.

30



Application 1. Food webs

31

M6

M5

edge

Our finding. Motif M6
organizes the food web 
into good clusters.

M6M5
edge
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Figure 2: Higher-order organization of the Florida Bay food web. A: Motif conductance for
different motifs on the Florida Bay ecosystem food web (19). A priori it is not clear whether the
network is organized based on a given motif. For example, motifs M5 (green) and M8 (blue)
do not reveal any higher-order organization (motif conductance has high values). However,
the downward spikes of the red curve show that M6 reveals rich higher-order modular struc-
ture (27). The shape of the curve suggests that food webs might be organized based on the
motif M6. Ecologically, motif M6 corresponds to two species mutually feeding on each other
and also preying on a common third species. B: Clustering of the food web based on motif
M6. (For illustration, edges not participating in at least one instance of the motif are omitted.)
The clustering reveals three known aquatic layers: pelagic fishes (yellow), benthic fishes and
crabs (red), and sea-floor macroinvertebrates (blue) as well as a cluster of microfauna and detri-
tus (green). Our framework identifies these modules with higher accuracy (84%) than existing
methods (65–69%) (11). The clustering reveals that the energy flow pattern of motif M6 occurs
frequently within these modules and infrequently across these modules. For example, it is un-
common for two competitors from one aquatic layer to hunt each other and then have common
prey in a different layer. C: A higher-order cluster (yellow nodes in (B)) demonstrates how the
pelagic layer is organized based on the motif M6. The needlefish and other pelagic fishes eat
each other while several other fishes are prey for these two species. D: Organization of micro-
fauna cluster (green nodes in (B)) based on the motif M6. Here, several microfauna decompose
into Particulate Organic Carbon in the water (water POC) but also consume water POC. Free
bacteria serves as an energy source for both the microfauna and water POC.
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Micronutrient 
sources

Pelagic fishes 
and benthic
prey

Benthic macro-
invertebrates

Benthic Fishes

Motif M6 reveals 
aquatic layers

A B

C

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (11).

7

61% accuracy vs.
48% with edge-
based methods

32

Application 1. Food webs
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Application 2

We know the motif of interest
from domain knowledge.



Application 2. Yeast transcription regulation networks

§ Nodes are groups of genes
§ Edge i → j means i regulates transcription to j
§ Sign + / - denotes activation / suppression
§ Coherent feedforward loops encode biological function 

[Mangan+03, Alon07]A C

B

D

Figure S8: Higher-order organization of the S. cerevisiae transcriptional regulation network.
A: The four higher-order structures used by our higher-order clustering method, which can
model signed motifs. These are coherent feedfoward loop motifs, which act as sign-sensitive
delay elements in transcriptional regulation networks (46). The edge signs refer to activation
(positive) or repression (negative). B: Six higher-order clusters revealed by the motifs in (A).
Clusters show functional modules consisting of several motifs (coherent feedforward loops),
which were previously studied individually (45). The higher-order clustering framework identi-
fies the functional modules with higher accuracy (97%) than existing methods (68–82%). C–D:
Two higher-order clusters from (B). In these clusters, all edges have positive sign. The func-
tionality of the motifs in the modules correspond to drug resistance (C) or cell cycle and mating
type match (D). The clustering suggests that coherent feedforward loops function together as a
single processing unit rather than as independent elements.
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Figure S8: Higher-order organization of the S. cerevisiae transcriptional regulation network.
A: The four higher-order structures used by our higher-order clustering method, which can
model signed motifs. These are coherent feedfoward loop motifs, which act as sign-sensitive
delay elements in transcriptional regulation networks (46). The edge signs refer to activation
(positive) or repression (negative). B: Six higher-order clusters revealed by the motifs in (A).
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Two higher-order clusters from (B). In these clusters, all edges have positive sign. The func-
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type match (D). The clustering suggests that coherent feedforward loops function together as a
single processing unit rather than as independent elements.
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Clustering based on coherent 
feedforward loops identifies 
functions studied individually
by biologists  [Mangan+03]
97% accuracy vs.
68–82% with edge-based methodsA C

B

D
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model signed motifs. These are coherent feedfoward loop motifs, which act as sign-sensitive
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Structure of the found modules
(all edge signs are positive)

Application 2. Yeast transcription regulation networks
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Application 3

We seek richer information
from our data.



Application 3. Transportation networks

§ North American air 
transport network.

§ Nodes are cites.
§ i→ j if you can travel 

from i to j in < 8 hours.
[Frey-Dueck07]
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Figure 4: Higher-order spectral analysis of a network of airports in Canada and the United

States (22). A: The three higher-order structures used in our analysis. Each motif is “an-
chored” by the blue nodes i and j, which means our framework only seeks to cluster together
the blue nodes. Specifically, the motif adjacency matrix adds weight to the (i, j) edge based
on the number of third intermediary nodes (green squares). The first two motifs correspond
to highly-connected cities and the motif on the right connects non-hubs to non-hubs. B: The
top 50 most populous cities in the United States which correspond to nodes in the network.
The edge thickness is proportional to the weight in the motif adjacency matrix WM . The thick,
dark lines indicate that large weights correspond to popular mainline routes. C: Embedding of
nodes provided by their corresponding components of the first two non-trivial eigenvectors of
the normalized Laplacian for WM . The marked cities are eight large U.S. hubs (green), three
West coast non-hubs (red), and three East coast non-hubs (purple). The primary spectral coor-
dinate (left to right) reveals how much of a hub the city is, and the second spectral coordinate
(top to bottom) captures West-East geography (11). D: Embedding of nodes provided by their
corresponding components in the first two non-trivial eigenvectors of the standard, edge-based
(non-higher-order) normalized Laplacian. This method does not capture the hub and geography
found by the higher-order method. For example, Atlanta, the largest hub, is in the center of the
embedding, next to Salina, a non-hub.

10

Important motifs from literature
[Rosvall+14] 

W (M)
ij = #{bi-directional length-2 paths from i to j}

Weighted adjacency matrix already reveals hub-like structure

39

Application 3. Transportation networks



Top 8
U.S. hubs

East coast non-hubs

West coast non-hubs

Primary spectral coordinate

Atlanta, the top hub, is 
next to Salina, a non-hub.

MOTIF SPECTRAL EMBEDDING EDGE SPECTRAL EMBEDDING
40

Application 3. Transportation networks
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Application 3. Transportation networks
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Applications 4, 5 & 6

Just some extra fun things 
we found.



The up-linked triangle finds an 
anomalous cluster in Twitter.

Anomalous cluster in the 1.4B edge Twitter graph.  
All nodes are holding accounts for a company, and the orange nodes 
have incomplete profiles. 43

Application 4. Anomaly detection in social networks



The “uplinked triangle” has 
been observed to occur much 
more frequently than in random 
graph models. [Milo+02]

44

Periphery 
groups link to 
each other.

Core group 
with large
in-degree.

Application 5. Hierarchical structure in web graphs



Application 6. Nictation control in a neural network

We find the control 
mechanism that explains 
nictation based on the 
bi-fan motif (Milo et al. 
found it over-expressed) 

A B

C

Nicatation – standing on a tail and waving 

A B

C

Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by 
IL2 neurons, Lee et al. Nature Neuroscience, 2011.

45
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§Generalization of graph clustering to higher-order structures 
(motifs) through a new objective (motif conductance).

§Generalizing old ideas from spectral graph theory admits a new 
algorithm and a motif Cheeger inequality.

§Applications in ecology, biology, transportation, social networks, 
the Web, and neuroscience.

Recap. Higher-order graph clustering

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7
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Key takeaways
§Organizing graphs according

to motifs reveals new insights into data

§Simple & scalable framework with 
theoretical guarantees

§ Impact in the community
- Motif-Based Analysis of Effective Connectivity in Brain Networks, Meier et al., 2016 
- Motif correlation clustering Li et al., 2016 
- Network analytics in the age of big data, Pržulj & Malod-Dognin, 2016

Higher-order clustering
Benson, Gleich, & Leskovec, Higher-order organization of complex networks, Science, 2016
Code + data  http://snap.stanford.edu/higher-order

Phase Transfer Entropy
directed brain networks 

http://snap.stanford.edu/higher-order
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Intermission…



Technical infrastructure
packets over the Internet, 
messages over supercomputer

Private communication
e-mail, phone calls, text 
messages, instant messages

Public communication
Q&A forums, Facebook 
walls, Wikipedia edits

Payments
credit card transactions, 
Bitcoin, Venmo

Biology
cell signaling

49

Timestamped connections are everywhere
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Current methods for analyzing temporal networks

1. Models for network growth
Growth of academic collaborations, Internet infrastructure, etc. [Leskovec+07]

2. Sequence of snapshot aggregates
Daily phone call graph [Araujo+14], Per-year co-authorship [Dunlavy+2010]

Opportunity  these methods do not capture the pulse of 
temporal networks that are constantly in motion.



51

How can we generalize motifs for 
temporal networks to provide

a new type of analysis?



Timestamps are fine-grained 
1 second resolution and O(years) span 

a

b
c

d

25s
17s, 28s, 30s, 35s

15s, 32s
31s

14s

many timestamps between the same pair of nodes!

Temporal networks are lists of directed edges 
with timestamps

52

source destination timestamp
a d 14s
c a 15s
a c 17s
a b 25s
a c 28s
a c 30s
c d 31s
c a 32s
a c 35s
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source destination timestamp
a d 14s

c a 15s

a c 17s

a b 25s

a c 28s

a c 30s

c d 31s

c a 32s

a c 35s

Temporal network motifs

1 2
3

δ = 10s

Temporal network motif
1. Directed multigraph 

with k edges
2. Edge ordering
3. Maximum time span δ

a

b c

25s 28s
32s

Motif instance k temporal 
edges that match the pattern 
that all occur within δ time

a

d c

14s 17s
15s Wrong order!

(c, a) before (a, c)

Paranjape, Benson, & Leskovec, WSDM, 2017
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Algorithmic challenge of temporal motifs

Given a temporal network and a temporal network motif,

a

b
c

d

25s
17s, 28s, 30s, 35s

15s, 32s
31s

14s

1 2
3

δ = 10s

a

b c

25s 28s
32s

a

b c

25s 30s
32s

c

d a

31s 32s
35s

count the number of motif instances in the network.

3 the 3 instances



Summary of new algorithms
In a network with m temporal edges and T static triangles
and a motif with k temporal edges.

1. General algorithm for any motif.
faster than O(mk) brute force approach 

2-nodes, k temporal edges.  O(k2 m),
linear time in size of data for const. k 

2. 3 nodes, 3 temporal edges, stars.  O(m)
linear time in size of data

3. 3 nodes, 3 temporal edges, triangles.  O(T1/2m)
faster than previous state-of-the-art  O(Tm) 1

2

3

1, 2 3

1, 3
2
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Optimized algorithms for special cases
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Processing a phone call 
network with 2 billion 
temporal edges takes just a 
few hours (single threaded).

New algorithms let us analyze large datasets
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Temporal motifs expose one-to-one and 
one-to-many behavior in communication systems

1,3
2

1
2,3

1,2
3

Phonecall-Eu

CollegeMsg

Email-Eu

SMS-A

FBWall

0.00.5
Fraction of counts

0.0 0.5
Fraction of counts

1,3 2

1 2,3

1,2 3

δ = 1 hour
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Key takeaways
§Temporal network motifs are a 
simple and effective way to analyze 
temporal networks, a data type for 
which we have few tools.

§Requires algorithmic insights to scale 
to large networks.

Temporal network motifs
Paranjape, Benson, & Leskovec, Motifs in Temporal Networks, WSDM, 2017. 
Code + data  http://snap.stanford.edu/temporal-motifs

1

2

3

http://snap.stanford.edu/temporal-motifs

