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A RECURSIVE SKELETONIZATION FACTORIZATION BASED
ON STRONG ADMISSIBILITY∗
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Abstract. We introduce the strong recursive skeletonization factorization (RS-S), a new
approximate matrix factorization based on recursive skeletonization for solving discretizations of
linear integral equations associated with elliptic partial differential equations in two and three dimen-
sions (and other matrices with similar hierarchical rank structure). Unlike previous skeletonization-
based factorizations, RS-S uses a simple modification of skeletonization, strong skeletonization, which
compresses only far-field interactions. This leads to an approximate factorization in the form of a
product of many block unit-triangular matrices that may be used as a preconditioner or moderate-
accuracy direct solver, with dramatically reduced rank growth. We further combine the strong
skeletonization procedure with alternating near-field compression to obtain the hybrid recursive
skeletonization factorization (RS-WS), a modification of RS-S that exhibits reduced storage cost
in many settings. Under suitable rank assumptions both RS-S and RS-WS exhibit linear computa-
tional complexity, which we demonstrate with a number of numerical examples.
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fast direct solvers, fast multipole method
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1. Introduction. Given a kernel function K(z), we consider the integral equa-
tion

a(x)u(x) + b(x)

∫
Ω

K(x− y)c(y)u(y) dy = f(x), x ∈ Ω ⊂ Rd,(1)

in dimension d = 2 or 3. Here, a(x), b(x), and c(y) are given functions that typically
represent material parameters, f(x) is some known right-hand side, and u(x) is the
unknown function to be determined.

We focus in this paper on the case where K(z) is associated with some underlying
elliptic partial differential equation (i.e., it is the Green’s function or its derivative).
For optimal complexity of our methods the kernel K(z) should not exhibit significant
oscillation away from the origin, though this is not strictly necessary to apply the
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STRONG RECURSIVE SKELETONIZATION FACTORIZATION 769

basic machinery. In this setting, (1) remains rather general and includes problems
such as the Laplace equation, the Lippmann–Schwinger equation, and the Helmholtz
equation in the low- to moderate-frequency regime. Further, while we concentrate
on the case where u(x) is scalar-valued, extension to the vector-valued case (e.g., the
Stokes or elasticity equations) is straightforward.

Discretization of (1) using typical approaches such as collocation, the Nyström
method, or the Galerkin method leads to a linear system with N degrees of freedom
(DOFs)

Ku = f,(2)

where the entries of the matrix K ∈ CN×N are dictated by the kernel K(z) and the
discretization scheme. For example, in the case where our domain is the unit square
Ω = [0, 1]2 a simple Nyström approximation to the integral using a regular grid with√
N points in each direction yields the discrete system

[a(xi) + wi]ui +
b(xi)

N

∑
i 6=j

K(xi − xj)c(xj)uj = f(xi), i = 1, . . . , N,(3)

where the discrete solution {ui} ≈ {u(xi)} approximates the continuous solution on
the grid and each term wiui corresponds to some discretization of diagonal entries of
K. Because K(z) is frequently singular at the origin, this discretization may be more
involved than that of the off-diagonal entries. While more complicated and higher-
order discretization schemes exist, (3) illustrates the key feature that off-diagonal
entries of K are given essentially by kernel interactions between distinct points in
space. In this paper we develop a method exploiting this fact and its consequences to
efficiently solve (2).

1.1. Background and previous work. Because K in (2) is dense and generally
large in practice, traditional direct factorizations of K such as the LU factorization
are typically too expensive due to the associated O(N3) time complexity and O(N2)
storage cost.

Given the availability of fast schemes for applying K such as fast multipole meth-
ods (FMMs) [11, 14, 15, 33], iterative methods such as the conjugate gradient (CG)
method [20] form a tempting alternative to direct methods. For first-kind integral
equations or problems where a(x), b(x), or c(x) exhibit high contrast, however, con-
vergence is typically slow leading to a lack of robustness. In other words, while each
iteration is relatively fast, the number of iterations necessary to attain reasonable
accuracies can be unreasonably large.

The above considerations have led to the development of a plethora of alternative
methods for solving (2) approximately by exploiting properties of the kernel K(z) and
the underlying physical structure of the problem. In particular, such methods take
advantage of the fact that K exhibits hierarchical block low-rank structure.

A large body of work pioneered by Hackbusch and collaborators on the algebra
of H-matrices (and H2-matrices) provides an important and principled theoretical
framework for obtaining linear or quasi-linear complexity when working with matrices
exhibiting such structure [17, 18, 19]. Inside the asymptotic scaling of this approach,
however, lurk large constant factors that hamper practical performance, particularly
in the three-dimensional (3D) case.

The H-matrix literature classifies matrices with hierarchical block low-rank struc-
ture into two categories based on which off-diagonal blocks of the matrix are com-
pressed. Given a quadtree or octree data structure partitioning the domain into small
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770 V. MINDEN, K. L. HO, A. DAMLE, AND L. YING

D′ ≥ D
D

D D

D

Fig. 1. Given two boxes in R2 each with sidelength D and with corresponding DOF sets B1
and B2, in the strong admissibility setting the associated off-diagonal blocks KB1B2 and KB2B1 are
assumed to be numerically low rank as long as the boxes are separated by a distance of at least D.
In contrast, in the weak admissibility setting the boxes need only be nonoverlapping.

boxes, let B1 and B2 be sets of DOFs corresponding to distinct boxes at the same
level of the tree each with sidelength D. For strongly admissible hierarchical matri-
ces, the off-diagonal block KB1B2

is compressed only if B1 and B2 are well-separated
as in the FMM—that is, if B1 and B2 are separated by a distance of at least D as
in Figure 1. In contrast, weakly admissible hierarchical matrices compress not only
well-separated interactions but also interactions corresponding to DOFs in adjacent
boxes. The inclusion of nearby interactions under weak admissibility typically in-
creases the required approximation rank, but it also affords a much simpler geometric
and algorithmic structure.

A number of more recent methods have been developed for hierarchically rank-
structured matrices with the aim of more efficient practical performance based on
weakly admissible rank structure. Examples include algorithms for hierarchical semi-
separable matrices [4, 5, 32], hierarchical off-diagonal low-rank matrices [1, 24], and
methods based on recursive skeletonization (RS) [25, 12, 21], among other related
schemes [3, 6]. In general, methods based strictly on weak admissibility require al-
lowing ranks of off-diagonal blocks to grow nonnegligibly with N to attain a fixed
target accuracy. This has led to the development of more involved methods such as
the hierarchical interpolative factorization (HIF) of Ho and Ying [22] and the method
of Corona, Martinsson, and Zorin [8], which combine RS with additional compression
steps based on geometric considerations to obtain greater efficiency at the cost of a
more complicated algorithm.

There has been much less work on improved algorithms for solving (2) based
directly on strong admissibility. The stand-out example is the recent “inverse fast
multipole method” (IFMM) of Coulier, Pouransari, and Darve [9] and Ambikasaran
and Darve [2], which assumes a general H2-matrix is given and provides a framework
for approximately applying the inverse operator in the language of the FMM. Further,
a factorization based on block elimination and strong admissibility has been recently
introduced by Sushnikova and Oseledets [31] for the “sparse analogue” of our integral
equation setting (that is, discretizations of elliptic partial differential equations).

1.2. Contributions. Based on the RS process of Martinsson and Rokhlin [25]
in the block elimination form of Ho and Ying [22, section 3], we introduce strong
skeletonization, an extension of skeletonization for the strong admissibility setting.
Using this in a recursive fashion like the original RS factorization, we develop the
strong recursive skeletonization factorization (RS-S), an approximate factorization
of K into the product of many block unit-triangular matrices and a block-diagonal
matrix with time complexity linear in the number of DOFs, under suitable rank-
scaling assumptions. Using low-accuracy approximations to off-diagonal blocks yields
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STRONG RECURSIVE SKELETONIZATION FACTORIZATION 771

an effective preconditioner for iterative methods applied to (2), whereas at higher
accuracies the resulting factorization can be used as a direct solver.

Like the IFMM [9, Appendix C], our factorization uses a bottom-up traversal
of the quadtree or octree decomposition of space to compress well-separated interac-
tions on a level-by-level basis. This allows efficient on-the-fly construction of a nested
“skeleton” basis for representing far-field interactions at different levels during the
factorization process, in contrast to the typical recursive H-matrix inversion algo-
rithm. Using skeletonization to maintain problem structure and exploit accelerated
compression techniques (see subsection 3.2), we obtain what may be thought of as a
multiplicative analogue of the FMM, using the same strong admissibility structure.
This gives a factorization of K or K−1 with simple constituent factors that is easy to
understand and implement.

As an extension to our approach, we combine the original weak-admissibility-
based skeletonization process with our strong-admissibility-based skeletonization and
introduce the hybrid recursive skeletonization factorization (RS-WS), which uses addi-
tional compression steps like HIF or the method of Corona, Martinsson, and Zorin but
does so without the need for spatial geometry beyond the boxes of the tree decompo-
sition. This additional compression reduces memory usage for practical performance
gains in many cases.

2. Preliminaries. In the remainder of this paper we adopt the following nota-
tion. For a positive integer N , the index set {1, 2, . . . , N} is denoted by [N ]. We write
matrices or matrix-valued functions in the sans serif font (e.g., A ∈ CN×N ) but make
no such distinction for vectors (e.g., x ∈ CN ). Given a vector or matrix, the norms
‖x‖ or ‖A‖ refer to the standard Euclidean vector norm and corresponding induced
matrix norm, respectively. The math-calligraphic font is used to indicate index sets
(e.g., I = {i1, i2, . . . , ir} with each ij a positive integer) that we use to index blocks
of a matrix (e.g., AIJ = A(I,J ) ∈ C|I|×|J |, using MATLAB notation). Therefore,
each index set has an implicit ordering, though we use the term “set” as opposed
to “vector” to avoid conflation. Because we are working with matrices discretizing
integral equations, indices in an index set are typically associated with points in Rd
(e.g., Nyström or collocation points or centroids of elements). As such, we will use
the more general term “DOF sets” to refer to both the index set B and the corre-
sponding points {xi}i∈B in Rd. Finally, to denote ordered sets of positive integers
that are not associated with points in the domain nor used to index matrices we use
the math-script font (e.g., L ).

2.1. Block-structured elimination. We begin with a brief review of block-
structured elimination and its efficiency, which is central to the skeletonization algo-
rithm.

Let A ∈ CN×N be an N ×N matrix and suppose [N ] = I ∪ J ∪ K is a partition
of the index set of A such that both AIK = 0 and AKI = 0, i.e., we have the block
structure

A =

 AII AIJ
AJI AJJ AJK

AKJ AKK

 ,
up to permutation. Assuming that the block AII is invertible, the DOFs I can be
decoupled as follows. First, define the matrices L and U as
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772 V. MINDEN, K. L. HO, A. DAMLE, AND L. YING

L ≡

 I

−AJIA
−1
II I

I

 , U ≡

 I −A−1
IIAIJ
I

I

(4)

with the same block partitioning as A. Then, applying these operators on the left and
right of A yields

LAU =

 AII
SJJ AJK
AKJ AKK

 ,(5)

where SJJ = AJJ − AJIA
−1
IIAIJ is the only nonzero block of the resulting matrix

that has been modified.
We say that SJJ is related to AJJ through a Schur complement update. Note

that while we choose here to write block elimination in its simplest form, in practice
it can be numerically advantageous to work with a factorization of AII as is done by
Ho and Ying [22, Lemma 2.1] as opposed to inverting the submatrix directly. Either
way, the cost of computing SJJ is O(|I|3 + |I| · |J |2).

2.2. Compression via the interpolative decomposition. Another key lin-
ear algebra tool of which we will make heavy use is the interpolative decomposition
(ID) [7].

Definition 2.1. Given both a matrix AIJ ∈ C|I|×|J | with rows indexed by I and
columns indexed by J and a tolerance ε > 0, an ε-accurate ID of AIJ is a partitioning
of J into DOF sets associated with so-called skeleton columns S ⊂ J and redundant
columns R = J \ S and a corresponding interpolation matrix T such that

‖AIR − AIST‖ ≤ ε ‖AIJ ‖ ,

or equivalently, assuming AIJ = [ AIR AIS ],∥∥AIJ − AIS [ T I ]
∥∥ ≤ ε ‖AIJ ‖ .

In other words, the redundant columns are approximated as a linear combination of
the skeleton columns to within the prescribed relative accuracy, leading to a low-rank
factorization of AIJ .

Note that while the ID error bound can be attained trivially by taking S = J , it
is desirable to keep |S| as small as possible. The typical algorithm to compute an ID
uses a strong rank-revealing QR factorization as detailed by Gu and Eisenstat [16],
though in practice a standard greedy column-pivoted QR tends to be sufficient. In
either case, the computational complexity is O(|I| · |J |2).

3. The strong recursive skeletonization factorization. We work in the
context of a given tree decomposition of the domain (quadtree or octree) such that
each leaf-level box of the tree contains a bounded number of DOFs independent of N .
When the tree is uniformly refined (i.e., each box has either 0 or 2d children and all
leaf boxes are at the same level), it is straightforward to use the strong admissibility
criterion illustrated in Figure 1 to identify which pairs of boxes are strongly admissible
and which are not, as in Figure 2: given a box, the near-field region for that box is
the region corresponding to adjacent boxes at the same level of tree, and the far-field
region is the remainder of the domain. The case where the tree is not uniformly
refined is similar, though we will illustrate our method with uniform trees in what
follows.
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STRONG RECURSIVE SKELETONIZATION FACTORIZATION 773

Fig. 2. Considering the DOFs B interior to the brown box on the left, the near-field DOFs N
are those interior to the blue boxes and the far-field DOFs F are those interior to the red boxes.
Note that not all boxes in the far-field are shown. On the right, we draw a “proxy surface” Γ (the
dashed circle) around the DOFs B such that the far-field F can be further decomposed into DOFs
belonging to boxes inside the proxy surface, O (still red), and DOFs belonging to boxes outside the
proxy surface, P.

3.1. Strong skeletonization. Given a matrix A ∈ CN×N indexed by points in
our domain, we begin by selecting DOFs B corresponding to a leaf-level box at the
finest level of the tree.

Letting N and F be the sets of near- and far-field DOFs as in Figure 2 (left), an
appropriate permutation P gives the block structure

P∗AP =

 ABB ABN ABF
ANB ANN ANF
AFB AFN AFF

 .
By assumption, the blocks ABF and AFB corresponding to the far-field interactions
of B are numerically low-rank and thus compressible. Given some tolerance ε, we
partition B into its redundant and skeleton DOFs B = R∪ S via the ID[

AFB
A∗BF

]
=

[
AFR AFS
A∗RF A∗SF

]
≈
[

AFS
A∗SF

]
[ T I ],(6)

which yields a skeleton set S and interpolation matrix T that can be used to represent
both the columns of AFB and the rows of ABF , i.e., AFR ≈ AFST and ARF ≈ T∗ASF .
Note that in (6) we have assumed for clarity of exposition that the redundant DOFs
R are ordered first within B such that no further permutation is necessary. We now
partition blocks of P∗AP according to this ID to obtain

P∗AP ≈


ARR ARS ARN T∗ASF
ASR ASS ASN ASF
ANR ANS ANN ANF
AFST AFS AFN AFF

 .
Because of the explicit linear dependence between far-field blocks of the ma-

trix, the redundant DOFs R can now be decoupled from the far-field DOFs F using
elementary block row and column operations. Defining the elimination matrices

UT ≡


I −T∗

I
I

I

 , LT ≡


I
−T I

I
I

 ,D
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774 V. MINDEN, K. L. HO, A. DAMLE, AND L. YING

we see that application of these operators on the left and right gives

UT


ARR ARS ARN T∗ASF
ASR ASS ASN ASF
ANR ANS ANN ANF
AFST AFS AFN AFF

 LT =


XRR XRS XRN
XSR ASS ASN ASF
XNR ANS ANN ANF

AFS AFN AFF

 ,
where the modified nonzero blocks marked with X correspond to some mixing of the
second row and column, respectively, with the first row and column as a consequence
of the elimination.

Using XRR as a pivot block to eliminate the other blocks in the first row and
column (i.e., performing block elimination as in subsection 2.1 with I = R, J = S∪N ,
and K = F) we define the corresponding matrices L and U as in (4) to obtain

LUTP
∗APLTU ≈


XRR

XSS XSN ASF
XNS XNN ANF
AFS AFN AFF

 ≡ Z (A;B) ,(7)

whereupon we see that the redundant DOFs R are now completely decoupled from
the rest of the problem.

We refer to this process as strong skeletonization of A with respect to the DOFs
B, as it is a direct modification of the skeletonization procedure of Martinsson and
Rokhlin [25] for the strong admissibility setting using the multiplicative formulation
of Ho and Ying [22, section 3]. We note that while ID-based compression of far-field
interactions has been used in the context of kernel-independent FMMs [26, 30], its
use for the construction of (approximate) direct solvers is novel.

For a purely notational convenience, we will define the left and right skeletoniza-
tion operators V and W as

V ≡ PU−1
T L−1, W ≡ U−1L−1

T P∗,(8)

with the understanding that these matrices will always be stored and used in the
factored form given for efficiency. In particular, recall that the block unit-triangular
matrices U, UT, and so on may be inverted by toggling the sign of the nonzero off-
diagonal block. With this shorthand we obtain

Z (A;B) ≈ V−1AW−1,(9)

a more compact representation of Z (A;B) in (7).

3.2. The use of a proxy surface. For optimal complexity it is desirable to
avoid computation with blocks indexed by F in the construction of Z (A;B), since
|F| is in general large. By design, the only part of computing Z (A;B) that involves
blocks indexed by F is constructing the ID, that is, finding the partition B = R ∪ S
and the interpolation matrix T in (6). For simplicity, we will drop the block A∗BF in
this section and explain how the subblock AFB can be compressed in an indirect way
that is more efficient than operating on AFB directly. The “transpose” of these ideas
can be used for the full stacked matrix including A∗BF .

For concreteness, consider the case where A ≡ K is a discretization such as (3)
with b(x) ≡ c(x) ≡ 1 and the 2D Laplace kernel K(z) = − 1

2π log(‖z‖). In this case,
entries of AFB are given (up to a factor of 1/N , which we drop in our discussion)
directly by K(xi − xj) for xi ∈ F and xj ∈ B.
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Suppose Γ is a circle (or sphere in three dimensions) enclosing the DOF set B
with radius normalized to a multiple of 5/2 the sidelength of the corresponding box.
As in Figure 2 (right), we partition the far-field DOFs of B as F = O ∪ P, where

P ≡ {i ∈ F| i is contained in a box entirely outside of Γ}

and O ≡ F \ P, i.e., O is the set of indices corresponding to the square of boxes
containing the proxy surface in the figure.

Define φi(x) ≡ K(xi−x) for xi ∈ P such that φi(xj) is the “incoming” harmonic
field generated at xj ∈ B by a source at xi. Because the DOFs in B are contained in the
closed region with boundary Γ and the DOFs in P are contained in the complementary
region, we may (under mild assumptions [27]) use a form of Green’s identity to write
φi(xj) for any xj ∈ B in terms of a density ψi(y) on Γ as

φi(xj) =

∫
Γ

ψi(y)K(xj − y) dy,(10)

where ψi(y) depends on xi but not on xj .
Because φi(xj) = K(xi−xj) for xi ∈ P ⊂ F and xj ∈ B, the left-hand side of (10)

is an entry of AFB. The right-hand side is a so-called single-layer representation of this
entry. Discretizing this representation by replacing the analytic integral over Γ with
numerical integration using np points y1, . . . , ynp , we see that, up to discretization
error,

AFB =

[
AOB
APB

]
≈
[

I
MPΓ

] [
AOB
GΓB

]
,(11)

where GΓB has entries K(xj−yi) for xj ∈ B and MPΓ is the matrix that approximately
maps GΓB to APB via a discretization of (10) for each xi ∈ P. We do not give an
explicit form of MPΓ, as we need only be assured of its existence for what follows.

The proxy trick for accelerated compression, which is heavily employed in the
literature [25, 7, 12, 8, 13, 21, 22, 30, 33, 26], makes use of two key observations
regarding (11). First, if np � |P| (for example, if we take np = O(1) and N to be
large), then it is relatively inexpensive to compute the ID[

AOB
GΓB

]
=

[
AOR AOS
GΓR GΓS

]
≈
[

AOS
GΓS

] [
T I

]
.(12)

Furthermore, because Γ is in the far-field of B, |S| should be small by assumption.
Second, using the discrete Green’s identity represented by MPΓ, combining (11) and
(12) yields

AFB ≈
[

I
MPΓ

] [
AOS
GΓS

] [
T I

]
≈ AFS

[
T I

]
,

i.e., the partitioning B = R∪S and interpolation matrix T in (12) also give an ID of
AFB. We caution that the amplification of the approximation error in this ID depends
on ‖MPΓ‖, among other factors, but note that this does not appear to be an issue in
practice (see section 4).

By using these ideas or modifications thereof to obtain the ID (6) as opposed to
using a rank-revealing QR on the far-field blocks directly, the complexity of compres-
sion now depends on the number of proxy points np and not on the total number of
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points in the domain and is thus substantially reduced. To apply this acceleration,
we require only a way to evaluate kernel interactions with Γ and that the entries of
APB satisfy a Green’s identity. While we have discussed only the Laplace kernel, the
same trick holds for, e.g., the Stokes, or elasticity kernel. A more thorough discussion
of the use of a proxy surface can be found in Ho and Ying [22, subsection 3.3], which
discusses the case of more general a(x) and b(x) in (1).

3.3. Algorithm and complexity. We turn now to a 1D sketch of our factor-
ization approach using strong skeletonization. Suppose we wish to solve an integral
equation over the unit line segment Ω = [0, 1] using the trapezoid rule to construct
the matrix K. Partitioning Ω into eight subintervals with corresponding DOF sets
Bi for i = 1, . . . , 8, we consider the first DOF set B1 and its corresponding near-field
DOFs N1 and far-field DOFs F1. This gives a block partitioning and labeling of K as
in Figure 3 (top left). We use the strong skeletonization algorithm of subsection 3.1
to decouple redundant DOFs in B1 to approximately obtain the new matrix

Z (K;B1) =


XR1R1

XS1S1 XS1N1
KS1F1

XN1S1 XN1N1 KN1F1

KF1S1 KF1N1
KF1F1

(13)

as in (9). We call the redundant DOFs R1 inactive, because they no longer play an
active role in our factorization procedure. In contrast, any DOFs that have not yet
been decoupled will be referred to as active.

Moving on to the next set of DOFs B2 with near-field DOFs N2 and far-field
DOFs F2, we observe that most of the nonzero entries of the matrix Z (K;B1) are
unchanged from their original value in K; see Figure 3 (top right). It is therefore
reasonable to perform strong skeletonization of this new matrix with respect to B2

and expect compression of the corresponding far-field interactions. This renders the
redundant DOFs R2 inactive and yields the new matrix

Z (K;B1,B2) ≡ Z (Z (K;B1) ;B2) ,

where we define Z (K; I1, I2, . . . , Ik) to be the result of skeletonizing K with respect
to the DOFs I1, skeletonizing the result with respect to I2, and so on. In successive
steps of strong skeletonization we skeletonize Z (K;B1,B2) with respect to the DOFs
B3 through B8 as in Figure 3 (bottom).

After skeletonization with respect to B8, the matrix Z (K;B1,B2, . . . ,B8) has many
diagonal blocks corresponding to completely decoupled redundant DOF sets Ri for
i = 1, . . . , 8 as well as many blocks corresponding to interactions between the re-
maining active skeleton DOF sets Si. We construct a new partitioning of Ω into four
subintervals and define the DOF sets

B9 ≡ S1 ∪ S2, B10 ≡ S3 ∪ S4, B11 ≡ S5 ∪ S6, B12 ≡ S7 ∪ S8.(14)

Permuting Z (K;B1,B2, . . . ,B8) such that these DOF sets are contiguous with the
inactive DOF sets Ri for i = 1, . . . , 8 permuted to the end for visualization purposes,
we obtain a matrix as in Figure 4 (left), at which point we may skeletonize successively
with respect to B9 through B12. It is not possible to again double the size of a
subinterval and expose any further compressible blocks, so we stop. The final matrix
Z (K;B1,B2, . . . ,B12) can be permuted to a block-diagonal matrix with small blocks
defined by the DOF sets Ri for i = 1, . . . , 12 and the DOF set S9 ∪ S10 ∪ S11 ∪ S12.
This block-diagonal structure can then be exploited to efficiently solve the linear
system (2).
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B1 B2 B3 B4 B5 B6 B7 B8

B1

B2

B3

B4

B5

B6

B7

B8

Ω

B1 B2 B3 B4 B5 B6 B7 B8

B1

B2

B3

B4

B5

B6

B7

B8

Ω

B1 B2 B3 B4 B5 B6 B7 B8

B1

B2

B3

B4

B5

B6

B7

B8

Ω

B1 B2 B3 B4 B5 B6 B7 B8

B1

B2

B3

B4

B5

B6

B7

B8

Ω

Fig. 3. We partition the 1D domain Ω into eight subintervals and block the corresponding matrix
K accordingly. Identifying the DOFs B1 (brown), N1 (blue), and F1 (red) in the top-left figure, we
skeletonize with respect to B1. Using the same color scheme for box, near-field, and far-field DOFs
in the top-right figure, we see that some redundant DOFs have been completely decoupled from the
rest and some blocks of the matrix have been modified through Schur complement updates (blocks
marked with “X”). We proceed to skeletonize with respect to the DOFs B2, and then B3 (bottom-
left figure) all the way through to B8 (bottom-right figure). Below each matrix, we show only the
remaining active DOFs at that step, i.e., we do not show the redundant DOFs corresponding to
decoupled diagonal blocks.

3.3.1. The general case: First level. Having given the flavor of our approach
in one dimension, we flesh out the details for the more general case. Suppose the inte-
gral equation (1) is discretized over Ω ⊂ Rd for d = 2 or 3. Given a tree decomposition
of the domain such that each leaf box contains a constant number of unknowns, we
number the levels of the tree starting from the finest level (` = 1) up to the root level
(` = L). We require a fixed but arbitrary bottom-up level-by-level traversal of theD
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B9 B10 B11 B12

(inactive DOFs)

B9

B10

B11

B12

Ω

B9 B10 B11 B12

(inactive DOFs)

B9

B10

B11

B12

Ω

Fig. 4. After skeletonization with respect to the DOFs B8 in Figure 3, we permute all decoupled
redundant DOF sets R1, . . . ,R8 to the end and define the next-level DOF sets B9, . . . ,B12 as in (14)
such that blocks of the matrix in the left figure correspond to aggregating blocks from the previous
level. Using the same color scheme as in Figure 3, in skeletonizing with respect to B9, we see that
blocks of interactions between B9 (brown) and N9 (blue) have modifications from Schur complement
updates (marked with “X”) from the previous level. We continue to skeletonize with respect to DOF
sets at this level up through to B12 (right figure), decoupling additional redundant DOFs as we go.

tree and order the boxes accordingly such that a box at level 1 is ordered before any
box at level 2 and so on. This ordering on all boxes of the tree induces corresponding
orderings on the boxes within each level of the tree, L` for ` = 1, . . . , L. For example,
in the case of a regular grid with 2d(L−`) boxes at level ` we obtain the orderings

L1 =
{

1, 2, . . . , 2d(L−1)
}
,

L2 =
{

2d(L−1) + 1, 2d(L−1) + 2, . . . , 2d(L−1) + 2d(L−2)
}
,

and so on. We do not require a regular grid of discretization points but use a regular
grid in all figures for illustration. Note in particular that this implies leaf boxes may
belong to levels other than ` = 1 in the general case.

Beginning at level ` = 1, we select the first leaf box and label the corresponding
DOFs as B1 with near-field DOFs N1 and far-field DOFs F1. We decouple and render
inactive redundant DOFs in B1 through strong skeletonization to obtain

V−1
1 KW−1

1 ≈ Z (K;B1)

with Z (K;B1) as in (13) and V1 and W1 the left and right skeletonization operators
corresponding to B1 as in (8).

Selecting the next box with corresponding DOFs B2, we define the DOF sets N2

and F2 as

N2 ≡ {active DOFs in the near-field of B2},
F2 ≡ {active DOFs in the far-field of B2}D
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B1

B2

B3

S1

B2

B3

Fig. 5. Left: Because the DOF sets B2 and B3 are both in the near-field of B1, skeletonization
with respect to B1 leads to updated interactions between B2 and B3 as a subblock of XN1N1

in (13).
Right: Considering now the next box, we see the DOF set B3 is in the far-field of B2, so the previous
Schur complement update has led to modified far-field interactions that must be compressed when
skeletonizing with respect to B2. However, interactions between B2 and DOFs corresponding to boxes
outside the proxy surface Γ are still unmodified due to geometric considerations as guaranteed by
Theorem 3.1.

so as to avoid unnecessary further computation with the inactive DOFs indexing the
first block row and column of Z (K;B1). To efficiently perform strong skeletonization
of A = Z (K;B1) with respect to the DOFs B2, it is necessary to assume that the
blocks AB2F2

and AF2B2
are still compressible. Note that this is not immediate, as

these blocks need not be original blocks of K. In particular, if B2 ⊂ N1 and F2∩N1 6= ∅,
then the block XN1N1 in (13) includes updated interactions between B2 and F2 ∩N1,
which has the potential to increase the numerical rank of said interactions. This is
illustrated in Figure 5.

Note that, drawing the proxy surface Γ around B2, it is still true due to geo-
metric considerations that the interactions AP2B2

between B2 and far-field points P2

contained in boxes outside of Γ are unchanged and, therefore, the accelerated com-
pression scheme in subsection 3.2 using a proxy surface is still justified.

Theorem 3.1. Skeletonization with respect to the DOFs Bi does not modify in-
teractions between Bj and Pj for j ≥ i. That is, if A = Z (K;B1,B2, . . . ,Bi) , then[

APjBj

A∗BjPj

]
=

[
KPjBj

K∗BjPj

]
.

Proof. Suppose D is the sidelength of the box with corresponding DOFs Bi and
consider skeletonizing A with respect to Bi. As in (13), we see the only updated
interactions between active DOFs are between Si and Ni. However, by definition of
Pj we know that Bj and Pj correspond to DOF sets separated by at least two boxes
of sidelength D′ ≥ D due to the fact that j ≥ i and our ordering corresponds to
a bottom-up traversal of the tree. Therefore, since the near-field DOFs Ni span a
distance of no more than 3D in each axial direction, either Pj ∩ (Si ∪ Ni) = ∅ or
Bj ∩ (Si ∪ Ni) = ∅, which implies skeletonization with respect to Bi did not modify
interactions between Bj and Pj .

With the above in mind, we skeletonize A with respect to B2 and obtain

V−1
2 AW−1

2 ≈ Z (A;B2) = Z (K;B1,B2)
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780 V. MINDEN, K. L. HO, A. DAMLE, AND L. YING

with

Z (A;B2) =


XR1R1

XR2R2

XS2S2 XS2N2
AS2F2

XN2S2 XN2N2
AN2F2

AF2S2 AF2N2 AF2F2

 ,
where the DOFs R2 have been made inactive as well. We note that while the nonzero
entries in the last block row and block column are unmodified from what they were
in A = Z (K;B1), this does not necessarily mean they are unmodified from what they
were in K. For example, consider that in Figure 5 we have S1 ⊂ N2 and B3 ⊂ F2, but
skeletonization with respect to B1 led to modified interactions between S1 and B3.

Proceeding as in the 1D case, we loop over each box at level ` = 1, identify its
corresponding DOFs Bi and active near- and far-field DOFs Ni and Fi, and perform
strong skeletonization using the proxy trick to capture interactions with Pi implicitly.
This process can be seen in Figure 6, where the subfigures show all active DOFs

Fig. 6. Considering an integral equation discretized uniformly over the 2D domain Ω = [0, 1]2,
we display the active DOFs at the point of skeletonization with respect to B1 (top left), B2 (top
right), B3 (bottom left), and B64 (bottom right). When skeletonizing with respect to Bi (brown
DOFs) the near-field DOFs Ni are colored blue and the far-field DOFs Oi corresponding to boxes
inside the proxy surface are colored red. Note that the full set of far-field DOFs Fi includes not just
the red DOFs but also all gray DOFs.
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STRONG RECURSIVE SKELETONIZATION FACTORIZATION 781

at various times during the skeletonization at level ` = 1 of a regular discretization
over the unit square. Supposing that there are r boxes at level ` = 1 (i.e., L1 =
{1, 2, . . . , r} = [r]), and defining [r]′ ≡ {r, r − 1, . . . , 1} as the reversal of [r], the
resulting matrix at this point is

Z (K;B1,B2, . . . ,Br) ≈
(
V−1
r . . .V−1

2 V−1
1

)
K
(
W−1

1 W−1
2 . . .W−1

r

)
≡

 ∏
i∈[r]′

V−1
i

K

∏
i∈[r]

W−1
i

 .
(15)

Note that in Z (K;B1,B2, . . . ,Br) each redundant DOF set Ri is completely de-
coupled from the rest of the problem, but each skeleton DOF set Si remains coupled
to all other skeleton DOFs.

3.3.2. The general case: Subsequent levels. Having finished level ` = 1 of
the tree, we step up to the next level of the spatial hierarchy, wherein boxes are twice
as large in each axial direction. Similar to our definitions of Fi and Ni, for a level
` > 1 we define the DOFs Bi of a box to be any active DOFs geometrically contained
in that box, that is, if

Ci ≡ {j | box j is a child box of box i} ,

then Bi ≡
⋃
j∈Ci

Sj (i.e., it is the union of the skeleton DOFs of its child boxes). With
this definition in tow we state the following corollary of Theorem 3.1.

Corollary 3.2. Suppose r is the number of the last DOF set at level ` ≥ 1.
Then, at the beginning of level `+ 1, all far-field interactions between active DOFs at
level `+1 are unmodified from their initial values in K. That is, if A = Z (K;B)1 ,B2, . . . ,
Br, then [

AFjBj

A∗BjFj

]
=

[
KFjBj

K∗FjBj

]
for all j > r.

Corollary 3.2 tells us that while one might fear that Schur complement updates
would propagate beyond interactions between Bj and Oj and thus require increasing
the size of the proxy surface, the opposite is in fact true: at the beginning of a level,
interactions with all of Fj are unmodified. Therefore, our argument in subsection 3.2
for the use of a proxy surface still holds and it is straightforward to loop over each box
on level ` = 2 and perform strong skeletonization with respect to the corresponding
DOFs Bi, as is visualized in Figure 7. We repeat level-by-level for ` = 3, 4, . . . , L− 2,
noting that at level ` = L−1 all boxes are adjacent and thus all sets of active far-field
DOFs are empty so compression of this form is not possible.

3.3.3. The final factorization. Supposing that the last set of DOFs at level
` = L − 2 is Bn, the matrix A = Z (K;B1,B2, . . . ,Bn) has the same form as (15),
albeit with more factors. Defining Bt to be the set of all active DOFs remaining at
this level of the tree, a last permutation to order the DOFs Bt contiguously yields the
block-diagonal matrix
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Fig. 7. After skeletonizing with respect to B64 at the end of Figure 6, we skeletonize with
respect to B65, the set of DOFs corresponding to the first larger box at the next level (left). Pro-
ceeding to skeletonize with respect to each box through to B80, the last box at this level, we see that
further compression has been attained as the number of remaining active DOFs has been reduced
substantially (right). All DOFs are colored as in Figure 6.

D ≡


XR1R1

. . .

XRnRn

ABtBt


≈ P∗t

 ∏
i∈[n]′

V−1
i

K

∏
i∈[n]

W−1
i

Pt.

Rearranging, we obtain an approximate factorization as

F ≡

∏
i∈[n]

Vi

PtDP
∗
t

 ∏
i∈[n]′

Wi

 ≈ K,(16)

which is the RS-S of K. The process of computing F is summarized in Algorithm 1.
Note that an approximate factorization of K−1 may be obtained directly as

F−1 =

∏
i∈[n]

W−1
i

PtD
−1P∗t

 ∏
i∈[n]′

V−1
i

 ≈ K−1,(17)

though the approximation error will in general increase by a factor of the condition
number of K. Further, in the case where K is positive definite, we have for all i that
Vi = W∗i . This means that, assuming our approximation is accurate enough that D
still admits a square-root D1/2, we may obtain a generalized square-root F1/2 with
F = F1/2(F1/2)∗ as

F1/2 ≡

∏
i∈[n]

Vi

PtD
1/2,

D
ow

nl
oa

de
d 

09
/0

8/
17

 to
 1

28
.8

4.
12

5.
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRONG RECURSIVE SKELETONIZATION FACTORIZATION 783

Algorithm 1. The strong recursive skeletonization factorization.

1: // Initialize

2: A := K
3: for ` := 1 to L− 2 do
4: for each box i ∈ L` do
5: // Identify relevant DOFs for strong skeletonization

6: [Bi,Ni,Fi] := {active DOFs in box/near-field/far-field}
7: // Perform strong skeletonization with respect to DOFs

8: A := Z (A;Bi) ≈ V−1
i AW−1

i

9: end for
10: end for
11: // Store middle block diagonal matrix and permutation

12: D := P∗tAPt
13: Output: F as in (16)

which differs from any generalized square-root K1/2 of K (e.g., the Cholesky factor)
by a unitary matrix in the ideal case (ε = 0 for all IDs).

In this setting, we may also compute an approximate log-determinant of K using
the fact that log |D| ≈ log |K|, which is useful for applications in statistics [28].

3.3.4. Complexity. As written, Algorithm 1 applies to an arbitrary tree de-
composition of space, i.e., some regions of space may be more refined than others
in an adaptive fashion. To compute meaningful complexity bounds, however, it is
necessary to impose some structure on the tree. As is standard, we assume a tree
with L = O(logN) levels in d dimensions is given such that each leaf box contains at
most a constant number of DOFs independent of N . Letting k` denote the maximum
of |Si| over all DOF sets corresponding to boxes on level ` and assuming k` ≤ k`+1

for all `, we obtain the following complexity result.

Theorem 3.3. Under the above assumptions and assuming further that a con-
stant number of points is used to discretize the proxy surface Γ, we have that the cost
tf of constructing the RS-S factorization F according to Algorithm 1 and the cost ts
of applying F or F−1 are given, respectively, as

tf = O(N) +

L−2∑
`=1

O(2d(L−`)k3
` ), ts = O(N) +

L−2∑
`=1

O(2d(L−`)k2
` ).

The memory requirement is trivially mf = O(ts).

Proof. Let k0 = 1 for convenience. Note that, for a DOF set Bi corresponding to
a box at level `, we have |Bi| = O(k`−1), |Ni| = O(k`−1), and |Oi| = O(k`−1), since
for leaf boxes the number of DOFs is bounded by a constant and for nonleaf boxes the
DOFs are given by aggregating skeleton DOFs of child boxes at the previous level.

Because the proxy surface Γ is discretized with a constant number of points, the
first matrix in (12) used to compute an ID for the skeletonization with respect to Bi
is of size O(|Oi|)×O(|Bi|). This implies that the cost of skeletonizing with respect to
the DOFs Bi corresponding to a box at level ` is O(k3

` ) using the complexity result
in subsection 2.1.

Finally, at each level `, there are at most 2d(L−`) boxes, which gives the stated
complexity for tf using the fact that 2dL = O(N). The complexity for ts follows a
similar argument, noting that all the block unit-triangular matrices can be trivially
inverted.
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For kernel functions K(z) such as we consider here, i.e., relatively nonoscilla-
tory Green’s functions arising from elliptic PDEs, standard multipole-type estimates
[14, 15] can typically be used to show far-field interaction blocks KBiFi

have ranks
depending only weakly on N . As previously mentioned in subsection 3.3.1, however,
Algorithm 1 involves compressing also far-field interaction blocks that have received
Schur complement updates to some of their entries from earlier steps of skeletoniza-
tion. For such entries, multipole estimates no longer directly apply, but ample numer-
ical experimentation seems to indicate similar rank behavior (see section 4) and thus
it is common to assume that updated blocks of this nature still exhibit multipole-like
rank behavior [22, 8, 9]. Proceeding under this assumption, we obtain a more explicit
complexity estimate.

Corollary 3.4. Suppose that for any fixed tolerance ε we have k` = O(`q) in
Theorem 3.3 for some q > 0, i.e., the skeleton sets grow only as some power of the
level index ` and kL−2 = O(logq N). Then the RS-S factorization cost tf , apply/solve
cost ts, and memory requirement mf scale as

tf = O(N), ts = O(N), mf = O(N),

with constants depending on the tolerance ε and dimension d.

Note that the construction of the initial tree decomposition of space requires an
additional upfront cost of O(N logN), but in practice this cost is negligible compared
to the factorization itself.

3.4. Extension: Hybrid skeletonization. Algorithmically, the RS-S factor-
ization has much in common with the RS factorization [25, 22]. The key distinction
between the two is exactly what is meant by “skeletonization.” In subsection 3.1, the
strong skeletonization process we describe is used to compress far-field interactions
(e.g., KBF ), leading to ranks essentially independent of N under our assumptions. In
contrast, in the traditional skeletonization procedure both the far-field and the near-
field are compressed, i.e., blocks such as KBBc with Bc = N ∪ F . As a consequence,
the skeleton set grows with the rank of the near-field interactions, which typically

goes as O(N
d−1
d ) at the top levels as has been illustrated in previous work [21]. After

sparse elimination analogous to the strong case, we are left with

ŨTP̃
∗AP̃L̃T =

 XRR
XSS ASBc

ABcS ABcBc

 ≡ Z̃ (A;B) .

Defining the notation

Ṽ ≡ P̃Ũ−1
T , W̃ ≡ L̃−1

T P̃∗(18)

analogously to (8), we obtain Z̃ (A;B) ≈ Ṽ−1AW̃−1. We refer to this near-field com-
pression and subsequent decoupling as weak skeletonization to distinguish it from its
strong counterpart.

While strong skeletonization typically leads to asymptotically more efficient fac-
torizations than weak skeletonization due to the higher rank of near-field interactions
compared to far-field interactions, it suffers from a higher storage cost. This is be-
cause, in contrast to the weak case, strong skeletonization requires an additional step
to explicitly decouple redundant DOFs from their near-field, and the corresponding
block elimination operators must be stored. To decrease the constant factor in the
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Algorithm 2. The hybrid recursive skeletonization factorization.

1: // Initialize

2: A := K
3: for ` := 1 to L− 2 do
4: for each box i ∈ L` do
5: // Identify relevant DOFs for weak skeletonization

6:

[
B̃i, B̃ci

]
:= {active DOFs in box/complement}

7: // Perform weak skeletonization with respect to DOFs

8: A := Z̃
(
A; B̃i

)
≈ Ṽ−1

i AW̃−1
i

9: end for
10: for each box i ∈ L` do
11: // Identify relevant DOFs for strong skeletonization

12: [Bi,Ni,Fi] := {active DOFs in box/near-field/far-field}
13: // Perform strong skeletonization with respect to DOFs

14: A := Z (A;Bi) ≈ V−1
i AW−1

i

15: end for
16: end for
17: // Store middle block diagonal matrix and permutation

18: D := P∗tAPt
19: Output: F as in (19)

asymptotic storage cost of strong skeletonization, we can combine both weak and
strong skeletonization in alternating fashion to obtain the RS-WS in Algorithm 2.

Using exactly the same tree decomposition as before, we begin by looping over
each box at the bottom level ` = 1 and performing weak skeletonization with respect
to the corresponding DOF sets B̃i for i ∈ L1, where we use a tilde to explicitly mark
that we are performing weak skeletonization as in (18). Assuming |L1| = r, this yields

Z̃
(
K; B̃1, B̃2, . . . , B̃r

)
≈

∏
i∈L ′1

Ṽ−1
i

K

 ∏
i∈L1

W̃−1
i

 .

Having now decoupled some number of DOFs via weak skeletonization without
modifying any nonzero off-diagonal blocks, it is now possible to loop again over L1,
this time performing strong skeletonization with respect to each set of active DOFs
Bi on the level. With A = Z̃(KB̃1, B̃2, . . . , B̃r), this gives

Z (A;B1,B2, . . . ,Br) ≈

∏
i∈L ′1

V−1
i

∏
i∈L ′1

Ṽ−1
i

K

 ∏
i∈L1

W̃−1
i

 ∏
i∈L1

W−1
i

 .

We repeat this process of weak skeletonization followed by strong skeletonization at
each level. A final step of permutation leads to the RS-WS factorization F ≈ K with

F ≡

 ∏
`∈[L−2]

(∏
i∈L`

Ṽi

)(∏
i∈L`

Vi

)PtDP
∗
t

 ∏
`∈[L−2]′

∏
i∈L ′`

Wi

∏
i∈L ′`

W̃i

 ,
(19)

which is analogous to (16) but more cumbersome notationally due to the need to loop
over the boxes on each level twice. We remark that, as a modification to the above,
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it is possible to perform a final step of weak skeletonization at level ` = L − 1 even
though subsequent strong skeletonization is not possible, and this is what we do in
practice.

4. Numerical results. To evaluate the performance of the RS-S and RS-WS
factorizations, we implemented a number of examples in MATLAB on top of the
FLAM library (https://github.com/klho/FLAM/). Our research code is available
at https://github.com/victorminden/strong-skel/. We use adaptive quadtrees and
octrees as appropriate, refining until the number of DOFs per leaf box is bounded by
nocc = O(1). Diagonal blocks of D were factored using the Cholesky decomposition
for positive definite K and the LU decomposition otherwise.

The primary quantities of interest for our examples (where applicable) are given
in the following legend:

• ε: tolerance parameter for all IDs;
• N : total number of DOFs;
• tf : wall clock time to construct the factorization F, in seconds;
• ts: wall clock time to solve Fx = b for x, in seconds;
• mf : memory required to store F, in GB;
• ea: estimate of ‖K− F‖/‖K‖;
• es: estimate of ‖I− KF−1‖ ≥ ‖K−1 − F−1‖/‖K−1‖;
• ni: number of iterations to solve (2) using CG to a tolerance of 10−12 on the

relative residual norm, where the right-hand side b is given up to scaling by
b = Kx for x a vector with normally distributed entries.

We estimate the operator errors using the power method [10, 23] to a tolerance of
10−2 in the relative error. For this and for CG, the matrices K and K∗ were applied
via the fast Fourier transform or a kernel-independent FMM as appropriate.

All computations were performed in MATLAB R2015b on a 64-bit Linux server
with Intel Xeon E7-8890 v3 CPUs at 2.50 GHz using up to 72 cores through BLAS
multithreading, where the number of cores at any time was chosen adaptively by
MATLAB.

4.1. Example 1: Unit square in two dimensions. We begin with a simple
2D example on the unit square Ω = [0, 1]2. Taking a(x) ≡ 0, b(x) ≡ c(y) ≡ 1,
and K(z) ≡ − 1

2π log(‖z‖) in (1), we discretize the resulting first-kind volume integral

equation using piecewise-constant collocation on a uniform
√
N by

√
N grid such that

Kij = 1
NK(xi − xj) for i 6= j. The diagonal entries Kii are approximated adaptively

using the dblquad function in MATLAB for simplicity such that

Kii ≈
∫ h/2

−h/2

∫ h/2

−h/2
K(x− y) dx dy,

where h ≡ 1/
√
N . Note that this is essentially a Nyström method, but viewing it

as piecewise-constant collocation makes sense of the modified diagonal. The order of
accuracy of this quadrature is not high compared to other more accurate quadratures
based on the idea of local corrections near the singularity, but its simplicity makes it
a good candidate for illustrating our approach.

We compare four different skeletonization-based approaches to factorizing K: RS
[22, 25], HIF [22], and the strong and hybrid recursive skeletonization factorizations
introduced in section 3 (RS-S and RS-WS). Since it is based strictly on near-field
compression, we expect RS to exhibit fundamentally different asymptotic scaling,
whereas the other three methods should all exhibit essentially linear scaling under our
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Fig. 8. Wall clock factor times tf and solve times ts and memory usage mf from Example
1 are shown for ε = 10−6 (top row) and ε = 10−9 (bottom row). Each plot follows the top-left
legend, with additional reference scaling curves O(N3/2) and O(N) (left subplots) and O(N logN)
and O(N) (center and right subplots). Corresponding data are given in Table 1.

rank assumptions. All cases were run across a range of N for tolerances ε = 10−6 and
ε = 10−9, with results visualized in Figure 8 and corresponding data given in Tables 1
and 2. For HIF and RS, we used an occupancy parameter nocc = 64, whereas for RS-S
and RS-WS, we used nocc = 256, hand-tuned in each case for optimal performance.
For all methods we used np = 64 proxy points to discretize the proxy surface.

In this 2D example, we see that all methods remain relatively competitive in
terms of factorization time tf for both tolerances. Looking at the plots of solve
time ts, we see that while all methods seem to scale as O(N logN) or O(N), for
ε = 10−9, RS-S is significantly (∼ 4X to 10X) slower than the other methods. Since
ts decreases drastically when using RS-WS (where we add additional levels of weak
skeletonization) we hypothesize that the jump in solve time for RS-S is due to caching
and the increased size of the subblocks comprising factors of F for RS-S as compared
to the other methods. This belief is reinforced by the scaling plots for the memory
mf , in which we see that, in two dimensions, memory usage for RS-S tends to be the
highest, followed by RS, RS-WS, and HIF. We note as well the sizable difference in
mf between RS-S and RS-WS, which shows that hybrid skeletonization is effective at
reducing memory usage in this setting.

Looking at Table 2, we see that the forward error ea of the approximate operator
is roughly O(ε). This seems to indicate that the relative operator-norm error of the
factorization is well-controlled by the relative error in the IDs of off-diagonal blocks,
which is difficult to prove for factorizations based on skeletonization. The bound es on
the error for the inverse operator exhibits similar behavior, though we lose accuracy
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due to ill-conditioning of K. Finally, while at these accuracy levels we may use F as a
moderate-accuracy direct solver, these factorizations perform exceedingly well when
used as preconditioners for CG, as exhibited by the small number of iterations ni
required to attain a relative residual norm of 10−12. Note that the unpreconditioned
method fails to converge within 100 iterations.

4.2. Example 2: Unit cube in three dimensions. We turn now to the
3D analogue of Example 1, a first-kind volume integral equation on the unit cube
Ω = [0, 1]3 with a(x) ≡ 0, b(x) ≡ c(y) ≡ 1, and K(z) ≡ 1

4π‖z‖ in (1). As before,

we use piecewise-constant collocation on a regular grid with adaptive quadrature for
the diagonal entries. In the interest of constructing efficient preconditioners or low-
precision direct solvers, we consider the tolerance levels ε = 10−3 and ε = 10−6 with
results visualized in Figure 9 and corresponding data given in Tables 3 and 4. For
ε = 10−3 we used the occupancy parameter nocc = 64 for all octrees, whereas for
ε = 10−6 we used nocc = 512 for RS-S and RS-WS and nocc = 64 for RS and HIF. To
discretize the proxy surface, we choose np = 512 points randomly distributed on the
sphere.

Contrary to the 2D case, we immediately observe the difference in scaling between
RS and the other methods considered for each of tf , ts, and mf . Further, for ε = 10−3

we see that HIF, RS-S, and RS-WS all scale approximately like O(N) with a clear
trade-off between factorization time and memory usage—RS-S gives the smallest tf
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Fig. 9. Wall clock factor times tf and solve times ts and memory usage mf from Example 2
are shown for ε = 10−3 (top row) and ε = 10−6 (bottom row). Each plot follows the top-left legend,
with additional reference scaling curves O(N2) and O(N) (left subplots) and O(N4/3) and O(N)
(center and right subplots). Corresponding data are given in Table 3. Note that in several cases the
curves for RS-S and RS-WS lie nearly on top of each other.
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but the largest mf of the three, the opposite is true for HIF, and RS-WS is somewhere
between RS and HIF. In particular, note that the memory usage for RS-WS is less
than for RS-S, as desired.

For ε = 10−6, we see that tf for RS-S and RS-WS is markedly less than for HIF.
We believe that some of this overhead is due to auxiliary data structures and functions
associated with the more complicated geometry exploited in HIF and could therefore
potentially be reduced via more sophisticated implementations. For all three, however,
we see scaling of tf that appears better than O(N2) but not quite O(N) as would be
predicted under our assumptions. One possibility is boundary effects: essentially, we
are perhaps not yet in the asymptotic regime because

(a) boxes at the boundary of Ω have smaller sets of near- and far-field DOFs than
do interior boxes, and are therefore cheaper to skeletonize, and,

(b) the number of interior boxes is relatively small in three dimensions for smallN .
Another possibility is simply that our assumption on rank behavior is incorrect at
ε = 10−6 for this example. Unfortunately, distinguishing between these cases requires
larger tests than are currently feasible due to memory constraints.

As in the 2D case, Table 4 shows that the approximate relative operator-norm
error ea seems relatively well-controlled by ε, though we observe small growth in N .
Similarly, the bound es on the relative error for the inverse operator again loses a few
digits compared to ea due to conditioning. For ε = 10−3 the number of CG iterations
to convergence grows with N , albeit slowly. For ε = 10−6, however, ni remains stable.

4.3. Example 3: Unit sphere in three dimensions. As a final example, we
move to a more complicated 3D geometry. Letting G(z) = 1

4π‖z‖ , we take a(x) ≡
−1/2, and b(x) ≡ c(x) ≡ 1 on the unit sphere Ω = S2 to obtain the second-kind
boundary integral equation

−1

2
u(x) +

∫
S2

∂G

∂ny
(x− y)u(y) dy = f(x), x ∈ S2,(20)

where our kernel is the normal derivative of the Green’s function for the Laplace
equation in three dimensions. This corresponds to a double-layer potential solution
representation for the interior Dirichlet Laplace problem on the unit sphere, that is,
taking

w(x) ≡
∫
S2

∂G

∂ny
(x− y)u(y) dy(21)

we have ∆w(x) = 0 for x inside the unit ball and w(x) = f(x) on S2.
While it is possible to build a periodic quadtree on a 2D parameterization of S2,

we treat the discretization of the sphere as points in R3 and use an octree. We use a
centroid collocation scheme to discretize (20), wherein we represent S2 as a collection
of flat triangles and treat all near-field interactions using fourth-order tensor-product
Gauss–Legendre quadrature, where we define near-field interactions as interactions
between triangles separated by a distance less than the average triangle diameter.
Note that this leads to an unsymmetric matrix K. We choose the occupancy parameter
nocc = 256 and np = 512 random proxy points as in Example 2.

Timing and memory results for ε = 10−3 and ε = 10−6 can be seen in Figure 10
with corresponding data for RS-S and RS-WS in Table 5. For ε = 10−3, all quantities
behave definitively linearly as expected, with RS-WS again offering a trade-off between
runtime and memory usage. For ε = 10−6, however, we actually observe sublinear
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Fig. 10. Wall clock factor times tf and solve times ts and memory usage mf from Example 3
are shown for ε = 10−3 (top row) and ε = 10−6 (bottom row). Each plot follows the top-left legend,
with additional reference scaling curves O(N logN) and O(N). Corresponding data are given in
Table 5. Note that in the last subplot the curves for RS-S and RS-WS lie nearly on top of each
other.

Table 5
Timing and memory results for Example 3.

RS-S RS-WS

ε N tf ts mf tf ts mf

10−3

81920 2.2e+2 1.5e−1 1.1e+0 3.3e+2 3.9e−1 6.3e−1
327680 7.8e+2 5.3e−1 4.2e+0 1.2e+3 1.4e+0 2.2e+0
1310720 3.0e+3 2.2e+0 1.7e+1 5.0e+3 5.6e+0 7.8e+0
5242880 1.1e+4 8.1e+0 6.7e+1 2.1e+4 2.0e+1 2.6e+1

10−6

81920 5.5e+2 3.6e−1 3.2e+0 7.8e+2 9.4e−1 2.9e+0
327680 2.0e+3 9.5e−1 1.1e+1 3.0e+3 3.7e+0 9.5e+0
1310720 6.5e+3 3.4e+0 3.8e+1 1.1e+4 1.4e+1 3.4e+1
5242880 2.0e+4 1.3e+1 1.4e+2 3.6e+4 5.4e+1 1.2e+2

scaling of tf with N , which clearly indicates nonasymptotic behavior. Further, looking
at mf we see that memory usage is not significantly lessened with RS-WS for this
example due to the fact that near-field compression is only mildly effective at this
precision level.

In Table 6 we provide ea and es for this example as well as a new quantity, ep.
The explanation of this is as follows. First, we choose 16 random sources {yj} with
‖yj‖ = 2 and construct the harmonic field

v(x) ≡
∑
j

G(x− yj)qj ,
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Table 6
Accuracy results for Example 3.

RS-S RS-WS

ε N ea es ep ea es ep

10−3

81920 2.2e−04 2.2e−04 4.0e−04 6.2e−04 6.8e−04 4.8e−04
327680 4.3e−04 4.3e−04 2.2e−04 9.7e−04 9.8e−04 2.6e−04
1310720 7.5e−04 7.5e−04 1.6e−04 1.4e−03 1.4e−03 2.3e−04
5242880 1.1e−03 1.1e−03 1.6e−04 1.9e−03 1.9e−03 2.3e−04

10−6

81920 6.9e−07 6.9e−07 3.8e−04 1.0e−06 1.0e−06 3.7e−04
327680 1.3e−06 1.3e−06 1.8e−04 1.9e−06 1.9e−06 1.8e−04
1310720 1.7e−06 1.7e−06 9.0e−05 2.8e−06 2.8e−06 8.9e−05
5242880 2.2e−06 2.2e−06 4.4e−05 3.9e−06 3.9e−06 4.4e−05

where each qj is a standard normal random variable. Taking the boundary data f(x)
in (20) to be v(x) on S2, the analytic solution to the interior Laplace boundary value
problem is exactly v(x) from uniqueness. Numerically, we may use (21) to reconstruct
v̂(x) ≈ v(x). Taking 16 random targets {zj} with ‖zj‖ = 1/2, we compute the relative
`2-norm error ep between {v(zj)} and {v̂(zj)}. These results show that RS-S and RS-
WS both solve the integral equation (20) up to discretization error. We do not provide
preconditioning results for this example, as the linear operator is well-conditioned even
without preconditioning.

5. Conclusions. By modifying the recursive skeletonization process of Martins-
son and Rokhlin [25] to operate directly on strongly admissible structure (i.e., perform
only far-field compression), we obtain a new factorization, RS-S, that is useful for solv-
ing integral equations in R2 and R3 both as a medium-accuracy direct solver and as
an excellent preconditioner for iterative methods. As a high-accuracy direct solver,
the performance of RS-S in three dimensions is less practical due to memory require-
ments, though 2D performance remains competitive. We further offer a modification
of our approach, RS-WS, which gives a trade-off between runtime complexity and
storage complexity through additional levels of compression.

We apply both factorizations to a number of examples to evaluate performance
according to a number of metrics. While we focus in this paper on solving integral
equations, the linear algebraic machinery developed can be applied much more broadly
for general structured matrices (e.g., kernelized covariance matrices [28]).

Compared to other skeletonization-based methods for obtaining linear or nearly
linear complexity factorizations such as HIF [22] or the method of Corona, Martinsson,
and Zorin [8] (for 2D problems), our approach is competitive but more importantly
is simpler to implement. In particular, these previous methods based on near-field
compression have obtained better runtime complexity at the cost of increased algo-
rithmic complexity by introducing additional geometric information beyond the tree
decomposition of space. By working directly with strong admissibility, this becomes
unnecessary. For 3D problems, we also observe better runtime performance than HIF;
see Figure 9.

In contrast to the IFMM of Coulier, Pouransari, and Darve [9] and Ambikasaran
and Darve [2], which provides a fast method for solving integral equations based
on exploiting strong admissibility through a telescoping additive decomposition, our
method takes the form of a multiplicative factorization. This gives greater flexibility
in that we may compute approximate generalized square-roots or log-determinants—
essentially, we get the benefit of having a true (albeit approximate) triangular
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1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 4 1 2 3 4 1 2

3 4 1 2 3 4 1 2

Fig. 11. To parallelize RS-S and RS-WS efficiently, a four-coloring of the domain (shown) can
be used such that no box is colored the same as its neighbors. All boxes of a given color may be
skeletonized independently. The 3D case is similar, albeit requiring more colors.

factorization. Further, building on the skeletonization framework allows accelerated
compression throughout our algorithm due to the use of a proxy surface as described
in subsection 3.2.

The most pressing direction for future research is understanding the rank behav-
ior of far-field blocks that have been subject to Schur complement updates through
the skeletonization process as discussed in subsection 3.3.1. The efficiency of our
factorizations hinges on these blocks remaining low-rank as the algorithm progresses,
which seems to be more or less true in our numerical experiments. Another direction
of future research is understanding the additional approximation error introduced
through the use of a proxy surface in subsection 3.2. In particular, while it follows
from the discussion of subsection 3.2 that an exact ID using proxy points leads to an
exact compression of the far-field interactions, it is not immediately evident how tight
a bound on the relative error in an approximate ID might be attainable when the IDs
are no longer exact and when the discrete approximation to Green’s identity is used.

Finally, due to the simple tree structure, RS-S and RS-WS are both easily paral-
lelizable. For example, on a regular 2D grid we may use a four-coloring of the boxes
on each level as in Figure 11. In this case, we may perform strong skeletonization with
respect to the DOF sets of each brown leaf box in parallel, then similarly for each
blue leaf box, and so on. This ordering should also, in principle, allow for adaptation
of fast factorization-updating algorithms such as we described in earlier work [29].

Acknowledgments. The authors thank the referees for valuable feedback, par-
ticularly on strengthening the statement of Corollary 3.4. The first author V.M. would
also like to thank A. Benson, R. Estrin, Y. Li, B. Nelson, N. Skochdopole, and X. Suo
for useful comments on early drafts of this manuscript, as well as Stanford University
and the Stanford Research Computing Center for providing computational resources
and support that have contributed to these research results.

REFERENCES

[1] S. Ambikasaran and E. Darve, An O(N logN) fast direct solver for partial hierarchically
semi-separable matrices, SIAM J. Sci. Comput., 57 (2013), pp. 477–501, https://doi.org/
10.1007/s10915-013-9714-z.

[2] S. Ambikasaran and E. Darve, The Inverse Fast Multipole Method, arXiv.org:1407.1572,
2014.

[3] J. Bremer, A fast direct solver for the integral equations of scattering theory on planar curves
with corners, J. Comput. Phys., 231 (2012), pp. 1879–1899, https://doi.org/10.1016/j.jcp.
2011.11.015.

D
ow

nl
oa

de
d 

09
/0

8/
17

 to
 1

28
.8

4.
12

5.
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1007/s10915-013-9714-z
https://doi.org/10.1007/s10915-013-9714-z
https://arxiv.org/abs/1407.1572
https://doi.org/10.1016/j.jcp.2011.11.015
https://doi.org/10.1016/j.jcp.2011.11.015


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRONG RECURSIVE SKELETONIZATION FACTORIZATION 795

[4] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver for HSS
representations via sparse matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 67–81,
https://doi.org/10.1137/050639028.

[5] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622, https:
//doi.org/10.1137/S0895479803436652.

[6] Y. Chen, A fast, direct algorithm for the Lippmann-Schwinger integral equation in two
dimensions, Adv. Comput. Math., 16 (2002), pp. 175–190, https://doi.org/10.1023/A:
1014450116300.

[7] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin, On the compression of low
rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404, https://doi.org/10.1137/
030602678.

[8] E. Corona, P.-G. Martinsson, and D. Zorin, An O(N) direct solver for integral equations
on the plane, Appl. Comput. Harmon. Anal., 38 (2015), pp. 284–317, https://doi.org/10.
1016/j.acha.2014.04.002.

[9] P. Coulier, H. Pouransari, and E. Darve, The Inverse Fast Multipole Method: Us-
ing a Fast Approximate Direct Solver as a Preconditioner for Dense Linear Systems,
arXiv:1508.01835, 2015.

[10] J. D. Dixon, Estimating extremal eigenvalues and condition numbers of matrices, SIAM J.
Numer. Anal., 20 (1983), pp. 812–814, https://doi.org/10.1137/0720053.

[11] W. Fong and E. Darve, The black-box fast multipole method, J. Comput. Phys., 228 (2009),
pp. 8712–8725, https://doi.org/10.1016/j.jcp.2009.08.031.

[12] A. Gillman, P. Young, and P.-G. Martinsson, A direct solver with O(N) complexity for
integral equations on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217–247,
https://doi.org/10.1007/s11464-012-0188-3.

[13] L. Greengard, D. Gueyffier, P.-G. Martinsson, and V. Rokhlin, Fast direct solvers
for integral equations in complex three-dimensional domains, Acta Numer., 18 (2009),
pp. 243–275, https://doi.org/10.1017/S0962492906410011.

[14] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[15] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace
equation in three dimensions, Acta Numer., 6 (1997), pp. 229–269, https://doi.org/10.
1017/S0962492900002725.

[16] M. Gu and S. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factor-
ization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869, https://doi.org/10.1137/0917055.

[17] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices, Computing, 62 (1999), pp. 89–108, https://doi.org/10.1007/s006070050015.
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