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Theory for the randomized SVD

Recall some notation from the previous lecture: given A ∈ Rm×n, we defined

Y = AΩ, Ω ∈ Rn×(k+p), (Ω)ij
i.i.d.∼ N (0, 1). (1)

and denoted PY for the spectral projector to the range of Y . Moreover, recall that we denoted

Ω1 := V >1 Ω, Ω2 := V >2 Ω, (2)

where V1, V2 are the right singular vectors of A. Notice that because V1, V2 are orthogonal to
each other, Ω1 and Ω2 are independent; moreover, since V1, V2 have orthonormal columns, Ω1

and Ω2 have i.i.d. N (0, 1) elements as well.
We previously showed the following Lemma:

Lemma 1. Assuming that Ω has full row rank, it holds that

‖(I − PY )A‖22 ≤ ‖Σ2‖22 + ‖Σ2Ω2Ω+
1 ‖

2
2 , (3)

where X+ denotes the pseudoinverse of the matrix X .

To move forward, we need to understand Ω2Ω+
1 when Ω has i.i.d. standard normal entries.

In that case, V >1 Ω and V >2 Ω also consist of i.i.d. Gaussian elements, by properties of orthogonal
transforms of Gaussians. This would also hold for any choice of so-called isotropic distribution;
for example, we could have sampled the columns of Ω from Rademacher random vectors.
See (Vershynin, 2018, Chapter 3) for a discussion about isotropic random vectors.

We now introduce some technical results necessary for the remainder of the proof:

Proposition 2. Fix S, T and draw a sample G with Gij
i.i.d∼ N (0, 1). Then:(

E
[
‖SGT‖2F

])1/2
= ‖S‖F ‖T‖F , (4)

E [‖SGT‖2] ≤ ‖S‖2 ‖T‖F + ‖S‖F ‖T‖2 . (5)

Theorem 3. Let G ∈ Rk×(k+p) have i.i.d. N (0, 1) entries. Then its pseudoinverse satisfies:

(
E
[
‖G+‖2F

])1/2
=

√
k

p− 1
(6)

E [‖G+‖2] ≤ e
√
k + p

p
(7)

The following theorem about Lipschitz concentration is standard (Vershynin, 2018, Chapter
5):
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Theorem 4. Let h : Rm1×m2 → R satisfy |h(X)− h(Y )| ≤ L ‖X − Y ‖F , ∀X,Y . Then, if G is a
Gaussian random matrix, we have

P (h(G) ≥ E [h(G)] + Lt) ≤ exp

{
− t

2

2

}
. (8)

Finally, we need a tail bound for the Frobenius and spectral norms of the pseudoinverse:

Proposition 5. For G ∈ Rk×(k+p) with Gij
i.i.d∼ N (0, 1) and p ≥ 4, we have

P

(
‖G+‖F ≥

√
3k

p+ 1
t

)
≤ t−p, ∀t ≥ 1 (9)

P
(
‖G+‖2 ≥

e
√
k + p

p+ 1
t

)
≤ t−(p+1), ∀t ≥ 1 (10)

We are now in good shape to prove the desired statement. In fact, we will prove something
stronger, as shown below:

Theorem 6. For Y defined as in (1), we have

E [‖(I − PY )A‖2] ≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p

(∑
j>k

σ2
j

)1/2

=

(
1 +

√
k

p− 1
+
e
√
k + p

p

√
sr(Σ2)

)
σk+1,

(11)

where sr(B) denotes the stable rank of B, defined as

sr(B) :=
‖B‖2F
‖B‖22

=

n∑
i=1

( σi
σ1

)2
(12)

Proof. Starting from our deterministic bound, we apply the expectation operator and obtain

E [‖(I − PY )A‖2] ≤ E
[(
σ2
k+1 + ‖Σ2Ω2Ω+

1 ‖
2
2

)1/2
]

≤ σk+1 + E
[
‖Σ2Ω2Ω+

1 ‖
2
2

]
(13)

where (13) is simply
√
x+ y ≤

√
x+
√
y. We proceed by analyzing the second term above. We

use the tower property of expectation and independence of Ω1 and Ω2 to write

E [‖Σ2Ω2Ω+
1 ‖2] = EΩ1 [E [‖Σ2Ω2Ω+

1 ‖2 | Ω1]]
(])

≤ ‖Σ2‖2 E [‖Ω+
1 ‖F ] + ‖Σ2‖F E [‖Ω+

1 ‖2] (14)

where (]) follows from Proposition 2. Applying Theorem 3 to upper bound the expectation
yields the claim.

Remark 1. The stable rank of a matrix is intimately related to the concept of statistical dimension
or stable dimension. In particular, the algebraic dimension of a mathematical object may change
abruptly even under small perturbations (e.g. adding gaussian noise εZ to a low rank matrix),
but the stable dimension changes smoothly as a function of the perturbation. An excellent
treatment is available in (Vershynin, 2018, Chapter 7).

We can also prove a corresponding high probability statement.
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Theorem 7. For all t, u ≥ 1, we have

‖(I − PY )A‖2 ≤

[
1 +

√
3k

p+ 1
t+ t

e
√
k + p

p+ 1

√
sr(Σ2)

]
· σk+1 + ut

e
√
k + p

p+ 1
σk+1 (15)

with probability at least 1−2t−p−e−
u2

2 . In particular, setting t = p and u =
√

2p log p gives probability
of success at least 1− 3p−p, as stated in the previous lecture.

Proof. The outline of the proof technique here is as follows: we have a “bad” event B that we
want to control (i.e. ‖(I − PY )A‖2 being large), which depends on a deterministic quantity
‖Σ2‖2 and a random quantity ‖Σ2Ω2Ω+

1 ‖2. To control the latter, we can see that Ω+
1 is “well-

behaved” (call this event E1); then, for a convenient choice of parameters, it is easy to see that the
contrary happens with very small probability. If B denotes the “bad” event where ‖Σ2Ω2Ω+

1 ‖2
is not small, observe that

P (B) = P (B ∩ E) + P (B ∩ Ec) = P (B | E) · P (E)︸ ︷︷ ︸
≤1

+P (B | Ec)︸ ︷︷ ︸
≤1

·P (Ec) . (16)

The remainder of the proof is devoted to control of the above.

• for any t ≥ 1, we define the event Et as

Et :=

{
‖Ω+

1 ‖2 ≤
e
√
k + p

p+ 1
t and ‖Ω+

1 ‖F ≤

√
3k

p+ 1
t

}
(17)

We can then see that

P (Ect ) = P

({
‖Ω+

1 ‖2 ≥
e
√
k + p

p+ 1
t

}
∪

{
‖Ω+

1 ‖F ≥

√
3k

p+ 1
t

})
(18)

(∗)
≤ P

(
‖Ω+

1 ‖2 ≥
e
√
k + p

p+ 1
t

)
+ P

(
‖Ω+

1 ‖F ≥

√
3k

p+ 1
t

)
(19)

(])

≤ t−p + t−(p+1) ≤ 2t−p, (20)

where (∗) is simply the union bound, and (]) follows by Proposition 5.

• let h(X) := ‖Σ2XΩ+
1 ‖2. Then it follows that

|h(X)− h(Y )| ≤ ‖Σ2‖2 ‖Ω
+
1 ‖2 ‖X − Y ‖F ,

i.e. h is Lipschitz with L := ‖Σ2‖2 ‖Ω
+
1 ‖2. This is true since

|h(X)− h(Y )| = |‖Σ2XΩ+
1 ‖2 − ‖Σ2Y Ω+

1 ‖2|
(])

≤ ‖Σ2XΩ+
1 − Σ2Y Ω+

1 ‖2
= ‖Σ2(X − Y )Ω+

1 ‖2 ≤ ‖Σ2‖2 ‖X − Y ‖2 ‖Ω
+
1 ‖2

≤ ‖Σ2‖2 ‖Ω
+
1 ‖2 ‖X − Y ‖F ,

where (]) is just the (reverse) triangle inequality for norms, the penultimate inequality
follows from the submultiplicative property of the spectral norm and the last inequality is
‖A‖2 ≤ ‖A‖F .
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We can now apply Theorem 4 conditionally on Et for h(X) defined as above; using Eq. (14)), we
obtain:

P

(
h(X) ≥ ‖Σ2‖2

√
3k

p+ 1
t+ ‖Σ2‖F

e
√
k + p

p+ 1
t+ ‖Σ2‖2

e
√
k + p

p+ 1
tu

∣∣∣∣∣ Et
)

(21)

≤ P (h(X) ≥ E [h(X)] + ‖Σ2‖2 ‖Ω
+
1 ‖2 u | Et) ≤ exp

{
−u

2

2

}
, (22)

where we used the fact that if β ≤ α, then P (X ≥ α) ≤ P (X ≥ β). Combining with the bound
for P (Ect ) gives probability of failure at most 2t−p + exp

{
−u2

2

}
, completing the proof after

substituting the bound for h(X) into the deterministic expression (3).

Extensions to other random matrices

It is possible to extend the above analysis to other types of random matrices, including structured
random matrices enabling quick application. At the cost of an extra log k term, one can use the
Subsampled Random Fourier Transform (SRFT) from Woolfe et al. (2008), which is defined as

Ω :=

√
n

`
DFR>, (23)

withD = diag(d1, . . . , dn) and di are uniformly sampled from the unit complex circle. If we wish
to remain in the real world, the Subsampled Random Hadamard Transform (SRHT) replaces
D with random signs and F with the n × n Hadamard matrix Hn (assuming for simplicity
that n = 2p for some p). Both F and H can be applied from the right in time O(mn log n);
the former is possible via the FFT, while the latter is via the Fast Walsh-Hadamard Transform.
The analysis for the SRHT appears in Tropp (2011); see also Drineas and Mahoney (2018).
The aforementioned structured random matrices find applications in fields extending beyond
numerical linear algebra; the SRHT has been used as a design matrix in compressed sensing Do
et al. (2011) and adjacent fields such as phase retrieval Duchi and Ruan (2019).

Here, we show how to adapt Theorem 7 to the SRHT sketching matrix. First, we need the
following theorem from Tropp (2011):

Theorem 8 (SRHT guarantees). Let r be the target rank, and draw an n× ` SRHT matrix Ω, where `
satisfies

n ≥ ` &
√
r log n.

Then, for a fixed orthonormal matrix V , it holds that

P
({
σ1(V >Ω) ≤ 1.48

}
∩
{
σr(V

>Ω) ≥ 0.40
})
≥ 1− c1r

−1

for a universal constant c1 > 0.

Then it suffices to note that for any A, it holds that ‖A+‖2 = σ−1
min(A), so σr(V >Ω) ≥ 0.40

implies that ‖Ω+
1 ‖2 ≤

1
0.40 . Similarly, ‖Ω2‖2 ≤ 1.48, and combining with the deterministic bound

from (3) yields the proof for SRHT matrices.
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