
Solving Least Squares with LSRN
CS 6220. Feb 6th, 2020
Instructor: Anil Damle
Scribes: Marissa Gee, Frank Li, Misha Padidar

1 Introduction
In this paper we will present the LSRN iterative algorithm for solving the Linear Least
Squares Problem. Linear Least Squares finds a linear regressor for a data set which minimizes
the squared residual. Most frequently it appears in statistics, data science, and machine
learning though the techniques are put to use in nearly any field using data. Typically,
Linear Least Squares is written as the following optimization problem:

min
x
‖Ax− b‖2 (1)

where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. In general, the number of data points m is larger
than the number of features n, and so the resulting system is over-determined. Moreover
the solution can be found analytically via the Normal Equations

x∗ = A†b = (ATA)−1AT b (2)

where A† is the Moore-Penrose pseudo inverse.
In practice, there are many methods to solve this problem, most of which depend greatly

on the size of m,n as well as structure in the data A. For problems which fit in memory,
direct methods are preferred as they are faster and more accurate. However as m or n
becomes large, iterative methods become preferable as run-time and solution accuracy can
be controlled. In either case, preferred solution schemes seldom explicitly form the normal
equations as they greatly increase the computational cost of solving the system and are
significantly more ill conditioned than the original system.

The method presented here, LSRN, develops a preconditioner for iterative method to solve
the strongly over- or under-determined least squares problem. The preconditioned system
provably has an eigen-spectrum that is independent of the original system [4]. The practical
benefit of this is that the well conditioned system gives LSRN “fully predictable run-time
performance” [4]. This is an extreme benefit over other applying other iterative solvers such
as CGLS or LSQR out of the box, in which case it is difficult to predict how many iterations
the solver will take to converge.

In the remainder of the document we assume that the system is strongly over-determined,
m >> n, and that A is full column rank, although LSRN can deal with the case when it is
not by finding the unique minimum length solution. We refer the reader to the primary text
for methods on strongly under-determined systems [4]. Lastly, we would like to note that
LSRN can solve Least Squares with Tikhonov Regularization; again we refer the reader to
the primary document [4].

1

2 LSRN

2.1 Motivation
By improving conditioning of the system, preconditioners for iterative methods can greatly
reduce the iteration count required for convergence. LSRN leverages this fact by developing
a general right-preconditioner to be used by iterative methods for solving least squares
problems. Solving the right preconditioned system amounts to first solving

min
y
||ANy − b||2 (3)

and then computing x∗ = Ny∗, where N is the right-preconditioner and y∗ is the solution
to (3). We can guarantee that the right-preconditioned system has the same solution as the
original system so long as range(N) = range(AT) [4].

LSRN has two general steps: First it uses randomness to generate a right-preconditioner;
Second it employs an iterative method to solve the preconditioned system.

Let us explore the first step. Suppose A = UΣV T is the SVD of A. Since U has orthonor-
mal columns, it is perfectly conditioned. In an ideal world, we could choose N = V Σ−1 as
our preconditioning matrix, so that the least squares problem would reduce to min ||Ux−b||2
which is easy to solve. However, computing the SVD of A is prohibitively expensive as m
becomes large. To ameliorate this problem, LSRN first preforms a dimension reduction on
A by applying a random matrix, Ã = GA, then approximates V Σ−1 by computing the SVD
of this smaller matrix. As we will see in 3, the use of randomness in this problem is justified,
as it allows us to disassociate the conditioning of AN from the the conditioning of A.

The second step of LSRN simply applies an iterative method to the preconditioned sys-
tem. The authors of LSRN recommend Chebychev Semi-Iterative Methods (CS) or Con-
jugate Gradient based schemes such as LSQR [4, 3, 5]. Throughout this document we will
introduce bounds for LSQR, and not CS iterations as LSQR is a highly favorable Least
Squares Solver. LSQR can be thought of as mathematically equivalent to applying conju-
gate gradient methods to solve the normal equations, but with additional computational
efficiency. LSQR is well-studied, and we can get a bound on the relative error of our solution
based on the conditioning of the normal equations.

Theorem 1. Let x(k) be the current iterate after k iterations of the LSQR algorithm. Ad-
ditionally, let x(0) be the initial guess and x∗ be the true solution, then

‖x(k) − x∗‖ATA

‖x(0) − x∗‖ATA

≤

(√
κ(ATA)− 1√
κ(ATA) + 1

)k

(4)

where ‖ · ‖ATA is the norm induced by the symmetric positive definite matrix ATA.

A few notes about the bound. First, it can be converted into a bound using the 2-norm,
but this leads to an additional constant factor in the inequality. Second, we can see that as
the condition number of ATA increases, the base on the right-hand side approaches one, and
thus the algorithm can theoretically converge much more slowly. The LSRN preconditioner
solves this problem by vastly improving the condition number of the matrix used in the
LSQR iterations.

2

In the following subsection we will introduce the LSRN algorithm and give a more detailed
justification of it’s impressive performance.

2.2 LSRN Algorithm
The LSRN algorithm for over-determined systems is as follows:

Algorithm 1: LSRN for Over-determined Systems

1. Choose oversampling factor γ > 1 and set s = dγne
2. Draw a matrix G that belongs to Rs×m such that the entries are i.i.d. and
sampled from the Standard Normal distribution.

3. Set Ã = GA.
4. Compute Σ̃ ∈ Rn×n and Ṽ T ∈ Rn×n such that Ã has the reduced SVD ŨΣ̃Ṽ T . Ũ
is not necessary to compute.

5. Set N = Ṽ Σ̃−1.
6. Apply an Iterative Method to solve ŷ = argminy‖ANy − b‖2.
7. Return x̂ = Nŷ.

In the above algorithm, Ã ∈ Rs×n, so for n << m, computing the SVD of Ã is much more
efficient than solving the normal equations for A. Furthermore we note that with probability
one range(N) = range(AT), which guarantees that the preconditioned systems will converge
to the true solution.

We can now formally show how LSRN preconditioning improves the condition number
of the Least Squares system. Recalling the SVD of A, Algorithm 1 sets Ã = GUΣV T . As
a rotation of a Guassian random matrix is still a Guassian random matrix, the product
G1 = GU will also be i.i.d. and distributed according to the standard normal distribution.
Further, we can substitute in the SVD of G1 to get

Ã = GUΣV T = U1Σ1V
T
1 ΣV T (5)

As U1 is orthonormal we can decompose it as U1 = ŨQ1 where Ũ is part of the SVD of Ã,
and Q1 is some orthonormal matrix. However as we know the SVD of Ã is ŨΣ̃Ṽ T , equation
(5) implies that Σ̃Ṽ T = Q1Σ1V

T
1 ΣV T , and thus setting N = Ṽ Σ̃−1 is equivalent to setting

N = V Σ−1V1Σ
−1
1 QT

1 (6)

and thus
AN = UV1Σ

−1
1 QT

1 . (7)

Since all of the other matrices are orthonormal, the condition number of the preconditioned
matrix, κ(AN), depends only on the Σ−11 , the singular values of the gaussian random matrix
G1. So now we would like to derive formal bounds on the singular values of a Gaussian
random matrix, which in turn would bound the condition number of the preconditioned
matrix AN .

Theorem 2. Consider G1 ∈ Rs×n with iid standard normal entries, then for any t > 0, we
can bound the probabilities P

max
{
P (σ1 ≥

√
s+
√
n+ t), P (σn ≤

√
s−
√
n− t)

}
≤ exp

(
−t2

2

)
(8)

3

This gives us a probabalistic bound on the largest and smallest singular values of G1,
which we can translate into a bound on the condition number of AN :

Theorem 3. For any α ∈
(

0, 1−
√
n

s

)
then

P

κ(AN) ≤
1 + α +

√
n

s

1− α−
√
n

s

 ≥ 1− exp

(
−α2s

2

)
(9)

Finally, with this new bound on the condition number of AN , we can use Theorem 1 to
bound the number of iterations LSQR will take to converge on the preconditioned Least
Squares system.

Theorem 4. Given a tolerance ε > 0. If x∗ is the true least squares solution and α ∈
(0, 1 −

√
n/s), then with probability 1 − exp(−α2s/2) a Conjugate Gradient-like method

(LSQR) will have error within
‖x(k) − x∗‖ATA

‖x∗‖ATA

≤ ε (10)

after k = (log ε − log 2)/ log(α +
√
n/s) iterations. where || · ||ATA is the norm induced by

the positive definite matrix ATA.

Now with high probability we have a guarantee of our solution accuracy. With this bound
we can tune the number of iterations LSRN performs in order to achieve desired accuracy.

In the next section we will analyze the cost of using LSRN.

3 Complexity Analysis
The complexity analysis is largely dependent on the cost of a matrix vector product with A,
denoted τA, which is assumed to be the largest cost. Assuming the average cost of generating
a standard normal random number is c, the cost of Algorithm 1 is

1. s×m× c for generating G

2. s× τAT for computing Ã

3. 2sn2 + 11n3 cost for computing Σ̃ and Ṽ T . [4, 2]

4. Niter(τA + τAT + 4n2) for applying an iterative method to solve preconditioned least
squares.

where Niter is the number of iterations of the solver. Notice that the computational burden
of the SVD in Algorithm 1 is greatly reduced as it is not necessary to compute Ũ . Assuming
τAT = τA, this brings us to a total cost of O(11n3+(2s+4Niter)n

2+(2Niter+s)τA+s×m×c).
The number of iterations can be estimated with high probability using our bound 4. For
example with an oversampling factor γ = 2, we can achieve an error tolerance ε = 10−14

within Niter ≈ 100 iterations [4]. This predictability is greatly beneficial, as many Least
Squares solvers do not have guarantees for general matrices A [4].

4

An additional benefit of LSRN is that it is easily parallelizable. The expensive matrix
vector product GA can be easily solved across machines, along with the generation of random
variables and the SVD of Ã

4 Concluding Remarks
LSRN leverages randomness to develop a preconditioner for Least Squares iterative solvers.
When using a Conjugate Gradients based iterative method, such as LSQR, LSRN becomes
a powerful, tunable and general least squares solver. We recommend LSRN with LSQR for
poorly conditioned systems, where the preconditioning can greatly augment the iteration
time and accuracy of an iterative method. The preconditioning, however, comes at a compu-
tational expense, so it is not recommended for systems that are extremely well conditioned.
In other cases, it may be possible to generate highly effective preconditioners for special-
ized problems using domain specific knowledge, which may be more effective than LSRN.
The advantage of LSRN is that it does not require specific knowledge of the problem to
generate a preconditioner. Though LSRN is a powerful method, it does not seem any more
favorable than other state-of-the-art methods such as Blendenpik. The authors found that
LSRN outperforms Blendenpik when A is sparse [4], but is slightly less efficient for dense A
[1, 4]. To that end, we recommend the reader consider application specific information prior
to choosing a Least Squares solver.

References
[1] Haim. Avron, Petar. Maymounkov, and Sivan. Toledo. Blendenpik: Supercharging la-

pack’s least-squares solver. SIAM Journal on Scientific Computing, 32(3):1217–1236,
2010.

[2] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press,
2012.

[3] Gene H Golub and Richard S Varga. Chebyshev semi-iterative methods, successive over-
relaxation iterative methods, and second order richardson iterative methods. 1961.

[4] Xiangrui Meng, Michael A Saunders, and Michael W Mahoney. LSRN: A parallel iter-
ative solver for strongly over- or underdetermined systems. SIAM Journal on Scientific
Computing, 36(2):C95–C118, 2014.

[5] Christopher C Paige and Michael A Saunders. Lsqr: An algorithm for sparse linear equa-
tions and sparse least squares. ACM Transactions on Mathematical Software (TOMS),
8(1):43–71, 1982.

5

