
CS 6220: Data-Sparse Matrix Computations
Lecture 4

Lecturer: Anil Damle
Scribe: Aneesh Heintz

Lecture Date: Feb 4, 2020

1 Fixed-rank approximation problem continued...

Continuing from the last lecture, we are given A ∈ Rm×m, a target rank, k, and oversampling
integer, q. The algorithm that solves the fixed-rank approximation problem is as follows:

1. Draw Ω ∈ Rn×(k+p) with iid N (0,1) entries.
2. Form the matrix product Y = AΩ
3. Construct a matrix Q ∈ Rm×(k+p) whose columns form an orthonormal basis for
the range of Y through QR decomposition: Y = QR, where R ∈ R(k+p)×n

However, now we wish to improve the upper bounds accuracy of randomized algorithms.
Here, we apply the randomized sampling scheme to the matrix B = (AAT)qA, where q > 0
is a small integer. B has the same singular vectors as A, but its singular values decay more
quickly. If we form a matrix product Z = BΩ, then

E||(I − PZ)||2 ≤ [1 +

√
k

p− 1
+
e
√
k + p

p

√
n]

1
2q+1σk+1

where E is the expectation w.r.t the random test matrix and σk+1 is the (k + 1)th singular
value of A. This amendment to the previous algorithm is quite similar to the following one.
Here, we have A = AT , A ∈ Rn×n, where

A =
(
V1 V2

)(Λ1

Λ2

)(
V T
1

V T
2

)
We can use randomized subspace iteration to compute an orthonormal matrix Q ∈ Rn×k

whose range approximates the range of A:

for k = 1, 2, ... do
Z = A Q(k−1)

Z = Q(k)R→ QR factorization
T = Q(k)TAQ(k) → (Use Q(k) to project A into smaller space.)
T = U ΛUT → eigen decomposition

end

1

Under mild assumptions, Q(k)U → (converges to) eigvecs of A,U1 and Λ→ Λ1. The compu-
tational bottleneck of randomized subspace iteration, however, is that computing Y = AΩ→
costs Tmult(A)(k + p). Therefore, we can use a structured random matrix that allows us to
pick Ω s.t. AΩ is ”fast.” One example of such way of choosing Ω is with the subsampled
random Fourier transform (SRFT). Here, we pick Ω = DFS. D is a signed Identity with
random signs. F is the discrete Fourier transform matrix. S ∈ Rn×(k+p) is a random sub-
sampling without replacement from the columns of the n× n identity matrix.

Up until now, we assumed that we could choose Q s.t. QTA was meaningful. We knew before
A−QQTA was small. Think of QTA as a dimension reduction of the cols of A. The columns
of QTA are low-dimensional representations of cols of A. QTAei is a low-dimensional (k +
p) embedding of Aei that depends on A. Can we build or use the embedding of the columns
of A that don’t know anything about A?

Definition: For a matrix G ∈ Rn×k, it is an ε-accurate subspace embedding for A if

(1− ε)||Ax||2 ≤ ||GTAx||2 ≤ (1 + ε)||Ax||2∀x

Given one of the subspace embedding, what is it good for? What can we do with it? One
example is that we can solve the least squares problem

2 Least Squares

Given a matrix A ∈ Rm×n and a vector b ∈ Rm, the least squares problem solves the problem

min
x∈Rn
||Ax− b||22

We can use randomized algorithms to find high-precision solutions to the linear least squares
problem that are over- or under-determined and possibly rank deficient. Say G is good for(
A b

)
. Therefore we can find x̂ s.t. ||GT (Ax̂− b)||2 is small. This would mean ||Ax̂− b||2 is

also small, but we lose a factor of ε. In the grand scheme of things, it does not result in too
much of a loss in accuracy. We could also ”estimate” ATB as ATGGTB (embed into lower
dimension) because we preserve distances, inner products, etc. However, let’s first tackle
the least squares problem. Pick G to be independent of A to help solve least squares. Now,
given A ∈ Rm×n with m >> n and b ∈ Rm, want to solve

min
x

1

2
||Ax− b||22

If we assume A has full column rank, there are two algorithms to solve the least squares
problem:

1. Blendenpik by Avron, Maymounkor, and Toledo in 2010
2. LSRN by Meng, Saunders, and Mahony in 2014

2

If we want to solve the least squares problem, one way is to use krylov subspace methods,
such as the method of conjugate gradients (CG) or Minres, to solve Mx = b for symmet-
ric, positive-definite matrix M . Mathematically, we can solve minx

1
2
||Ax − b||22 by solving

(?)ATAx = AT b. We can solve (?) by forming applying CG or Minres to the normal equation.

LSQR is equivalent to applying CG on normal equations.
LSMR is equivalent to applying Minres on normal equations.

Instead of directly forming a Krylov subspace associated with ATA, we can use Golub-Kahan
bidiagonalization. For lecture purposes, we wanted to note the existence of LSQR & LSMR.
Generally, it is hard to predict the number of iterations for CG-like methods. Therefore,
when using LSQR to solve the least squares problem, we have that

||x(k) − x?||ATA

||x0) − x?||ATA

≤ 2(

√
k(ATA)− 1√
k(ATA) + 1

)k

x(k) is the guess for x? at iteration k. x? is the true solution. x(0 is the initial guess. Absent
any info about A, this produces an upper bound of the guess.

For least squares problems, there are two types of faster preconditions. To solve minx ||Ax−
b||2:

1. Left solve MTBx = MTd for some M
2. Right solve BNy = d for some N → x = Ny

Theorem: x?right = Ny? where y? solves (min length solution)

min
y
||ANy − b||2

If range(N) = range(AT), then x? = x?right, where x? is the solution of minx ||Ax− b||2.

3 References

1. Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM review, 53(2):217–288, 2011.

2. Saunders, Michael Mahoney, Michael. (2011). LSRN: A Parallel Iterative Solver for
Strongly Over- or Underdetermined Systems. SIAM Journal on Scientific Computing. 36.
10.1137/120866580.

3

	Fixed-rank approximation problem continued...
	Least Squares
	References

