
CS 6220: Data-sparse Matrix Computations Lecture 5:

Least Squares Part 1

Author: Andrew Graven
ajg362

February 4, 2020

1 Wrapping Up The Randomized SVD

Recall the Randomized SVD Algorithm:

Algorithm 1 The Randomized SVD (Given A ∈ Rn×n, target rank k and oversampling parameter p)

1: Draw Ω ∈ Rn×(k+p) w/ iid N(0, 1) entries.
2: Set Y = AΩ.
3: Compute [Q,∼] = qr(Y ) (Reduced QR Factorization).

4: Set B = QTA.
5: Compute B = UBΣBV

T
B (Reduced SVD).

6: U = QUB , Σ = ΣB , V = Vb.
7: Return [U,Σ, V ].

Randomized SVD Complexity = O(Tmult(A)(k + p) + n(k + p)2)

Randomized SVD Error Bound: E‖A− UΣV T ‖2 ≤
[
1 +

4
√
k + p

p− 1

√
n

]
σk+1

Side note: If we take γ = k + p (the rank of Ω), then note that the above error bound implies the slightly
stronger result:

E‖A− UΣV T ‖2 ≤ min
k+p=γ; k>0,p>1

[
1 +

4
√
k + p

p− 1

√
n

]
σk+1 = min

k∈[0,γ−2]

[
1 +

4
√
γ

γ − k − 1

√
n

]
σk+1

In particular, this suggests that in practice we might expect to do better than the standard error bound
would indicate. For example, if the values were chosen so that n = 1000 k = 10, p = 3 and σ11 = 1,
σ12 = 1 · 10−5 the naive error bound would predict:

E‖A− UΣV T ‖2 ≤

[
1 +

4
√

13

2

√
1000

]
≈ 229

While a much tighter bound on the error can be shown by setting k = 11, p = 2:

E‖A− UΣV T ‖2 ≤

[
1 +

4
√

13

1

√
1000

]
1 · 10−5 ≈ 4.57 · 10−3

In particular, if there’s a large jump in the singular values of A for some k + 1 s.t. k ∈ [0, γ − 2], then
performance may be significantly better than expected.

A natural question to ask now would be: How can we improve the above error bound, perhaps while
doing a bit more work? One option is to borrow an idea from power iteration: if A is applied to Ω several
times, the range of the resulting Y will better approximate the range of A. Indeed, if we take an additional
”iteration” parameter q and now let Y = (AAT )qAΩ, the new algorithm becomes:

1



Algorithm 2 The Randomized SVD With q−Iteration
Given: A ∈ Rn×n, target rank k, oversampling parameter p and iteration parameter q

1: Draw Ω ∈ Rn×(k+p) w/ iid N(0, 1) entries.

2: Set Y = (AAT )qAΩ.
3: Compute [Q,∼] = qr(Y ) (Reduced QR Factorization).

4: Set B = QTA.
5: Compute B = UBΣBV

T
B (Reduced SVD).

6: U = QUB , Σ = ΣB , V = Vb.
7: Return [U,Σ, V ].

Randomized SVD With q-Iteration Complexity = O(Tmult(A)(k + p)q + n(k + p)2)

Randomized SVD With q-Iteration Error Bound: E‖A− UΣV T ‖2 ≤

[
1 +

√
k

p+ 1
+
e
√
k + p

p

√
n

] 1√
2q+1

σk+1

Note that one major caveat of the q−Iteration method is that the conditioning of Y becomes progressively
worse. That is, for Algorithm 1, K(Y ) = K(AΩ) = K(A). But for Algorithm 2, K(Y ) = K((AAT )qAΩ) =
K(A)2q+1. A potential solution to this issue would be to add an orthogonalization step after each iteration.

Another note on the computational complexity of the Randomized SVD: One of the potentially domi-
nating terms in the computational complexity of the SVD is the Tmult(A)(k + p) term resulting from the
application of A to Ω. In particular, if A isn’t amenable to fast matrix-vector multiplication, then this
term can be problematic. A potential solution to this problem is to change the choice of Ω s.t. AΩ can be
computed more quickly. This, of course comes with the caveat that we lose many of the nice properties of
Ω being chosen from an iid normal distribution - in particular, it makes clean error analysis more difficult.

There are many different choices of Ω that are used in practice, but one particularly popular choice is
the “Sub-sampled Randomized Fourier Transform”, where:

Ω = DFS, D ∈ Rn×n, F ∈ Rn×n, S ∈ Rn×(k+p)

Where:
D = the identity matrix with random sign flips on the diagonal.
F = the Discrete Fourier Transform Matrix.
S = a random sub-sampling of the Fourier Coefficients (ie. exactly one non-zero entry per column chosen
uniformly at random).
D and S can clearly be applied in O(n) and O(k+ p) respectively because they each have at most one non-
zero entry per column. Furthermore, the Discrete Fourier Transform Matrix can be applied in O(n log(n))
time by applying the Discrete Fast Fourier Transform.

2 Introduction to Randomized Methods for Least Squares

Recall from the lectures on the Randomized SVD that QTA had meaning to the extent that ‖A−QQTA‖2
was small. For least squares, instead we can think of QTA as a dimension reduction on the column space of
A. ie. QTAei (where ei is some standard basis vector) is a low-dimensional (k+ p)−dimensional embedding
of Aei, containing some information about the structure of A.

• Question: Can we use an embedding of the column space of A which is agnostic to the structure of A?

• Definition: A matrix G ∈ Rn×k is called an ε−accurate subspace embedding for A if:

(1− ε)‖Ax‖2 ≤ ‖GTAx‖2 ≤ (1 + ε)‖Ax‖2 ∀x ∈ Rn

• Question: When is having such a matrix useful?

2



2.1 Case 1: Least Squares

If A ∈ Rm×n, m >> n, and we want so solve:

min
x∈Rn

‖Ax− b‖22

Then, if G is an ε−accurate subspace embedding for A, we have that if ‖GT (Ax̂−b)‖2 is small, then ‖Ax̂−b‖2
is also small with a factor of ε. In fact, one possible approach to solving such least squares methods is to
use randomness to generate a right-preconditioner (see below for formal definition) which is simultaneously
a “good” ε−subspace embedding. Thus significantly reducing the cost per iteration, while simultaneously
increasing the convergence rate - with some qualifications pertaining to the ε factor, and probabilistic bounds
on the condition number of the new preconditioned problem. In fact, this is similar to the approach used by
LSRN, outlined in section 3.2.

2.2 Case 2: Estimating Matrix-Matrix Products

Using G, we can approximate ATB ≈ ATGGTB.

• In fact, G can be chosen such that E(ATGGTB) = ATB. From there, properties such as variance can
be considered.

(For more on ε−accurate subspace embeddings and matrix multiplication, see Woodruff2)

3 Randomized Methods for Least Squares

Problem Statement: Given A ∈ Rm×n, m >> n, b ∈ Rm, want to solve:

min
x∈Rn

1

2
‖Ax− b‖22

(We assume that A has full column rank. Note that this can easily be extended to the case of column
rank-deficient A, but the analysis is cleaner in the first case).

Two major randomized algorithms for solving randomized least squares:

1. “Blendnpik” (Avron, Maymounkov and Toledo)1

2. “LSRN” (Meng, Saunders and Mahoney)3

3.1 An Aside on CG (Conjugate Gradient Decent) and MINRES

Conjugate Gradient (CG) is a Krylov method for solving Mx = b when M is symmetric positive definite
(SPD). MINRES is another such algorithm. The primary difference between these two algorithms is that
CG minimizes with respect to the norm defined by M , whereas MINRES minimizes residual error.

Mathematically, we can exactly solve:

min
x∈Rn

1

2
‖Ax− b‖22

Using the normal equations:

ATAx = AT b

• Caveat: Use of the normal equations will typically require solving a more poorly conditioned problem
than the original because K(ATA) = K(A)2.

3



Krylov methods for solving Least Squares, such as CG or MINRES, try to solve this problem without directly
applying the normal equations. Several variants include:

• LSQR: Mathematically equivelent to CG on the normal equations, without explicitly using them, and
thus avoiding many of the numerical issues posed by direct use of the normal equations.

• LSMR: Mathematically equivelent to running MINRES on the normal equations, without explicitly
using them, and thus avoiding many of the numerical issues posed by direct use of the normal equations.

(Specifically, these methods avoid the issue mentioned above that K(ATA) = K(A)2).

3.2 LSRN

Big idea: LSRN is an iterative procedure utilizing preconditioning on LSQR to accelerate convergence. In
exact arithmetic, LSQR has the following error bound at the kth iterate:

‖x(k) − x∗‖ATA

‖x(0) − x∗‖ATA

≤
(
K(A)− 1

K(A) + 1

)k
Where:

• x(k) is the kth iterate.

• x∗ is the true solution.

• ‖x‖ATA = xT (ATA)x, the norm induced by the inner product defined by ATA.

There are two primary types of preconditioning for solving systems of the form Bx = d:

1. Left Preconditioning: Solve instead MTBx = MT d.

2. Right Preconditioning; Solve BNy = d, then take x = Ny.

These techniques can be extended to Least Squares problems (and thus algorithms such as LSRN):

• Theorem: If x∗ = Ny∗, when y∗ solves miny ‖ANy − b‖, then if range(N) =range(AT ), then x∗ is the
solution to minx ‖Ax− b‖2.

The question then becomes: How do we construct a preconditioner such that it simultaneously reduces the
condition number of A, well approximates the range of AT and is fast to apply vectors to?

References

[1] Avron H., Maymounkov P., and Toledo S. Blendenpik: Supercharging lapack’s least-squares solver. SIAM
Journal on Scientific Computing, 2010.

[2] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in Theo-
retical Computer Science, Vol 10, Issue 1–2, 2014, pp 1–157, 2014.

[3] Meng X., Saunders M., and Mahoney M. Lsrn: Strongly over- and under-determined systems. SIAM
Journal on Scientific Computing, 2014.

4


