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1 Introducing to embeddings

Modern scientific computing often requires us to efficently processes high dimensional data.
For example, a 256 by 256 RBG image is 256× 256× 3 = 196, 608 dimensional and a 3 minute
song sampled at 44.1kHz is 44, 100 × 3 × 60 = 7, 938, 000 dimensional. In these cases, a naive
application of classical algorithms to high dimensional data may requre intractable memory or
computation time. However, if we can reduce the data dimensionality, then we can continue to
use existing algorithms. Note that any useful dimensionality reduction method must preserve
geometric relationships in the data since they contain meaningful information about the in-
puts. For instance, the relative positions and directions of word embeddings contain semantic
and syntactic relationships among words, and the low-dimensional translations must, to some
extent, preserve such properties for further analysis and processing.

Here we will introduce low-dimensional embeddings as a method of dimensionality re-
duction. We will see that such embeddings are cheap to compute using randomness while
preserving geometric attributes of the input data. Once computed, such low-dimensional em-
beddings will only require multiplying the input by the embedding matrix, an operation that
can be accelerated with either highly-optimized dense matrix multiplication routines or with
sparse embedding matrices.

Definition 1. Let V ⊆ Rn. S ∈ Rd×n is an embedding with distortion ε > 0 of V if for all x ∈ V

(1− ε) ‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ε) ‖x‖2 . (1)

Note that typically embeddings will have d < n. Notice that an embedding must have
Sx 6= 0 for all x 6= 0. Conceptually, this corresponds to a “loss of information” about the
original x. Mathematically, it would fail to preserve norms since (1− ε) ‖x‖2 > 0.

Definition 2. A S ∈ Rd×n that satisfies 1 is a subspace embedding of V if V is a linear subspace
with dimension k of Rn.

In other words, an ε-embedding is one that approximately preserves distances and inner
products within the set V . It turns out that we can construct embeddings quite easily by let-
ting them be random matrices. Even better, sparse low dimensional embeddings can also be
made from random matrices. The existence of low dimensional, sparse embeddings has im-
plications for algorithms that we’ve seen in this class. For example, when doing randomized
least squares, we can use a sparse S instead of a random Gaussian dense matrix to accelerate
the algorithm and reduce memory usage.

Definition 3. Given some subset of the unit sphere, E ⊆ Sn−1, the minimum and maximum
restricted singular values of S ∈ Rd×n with respect to E are

σmin(S,E) := min
x∈E
‖Sx‖2 (2)
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σmax(S,E) := max
x∈E
‖Sx‖2 (3)

Restricted singular values are generalizations of ordinary singular values, which we obtain
if E = Sn−1. These quantities measure how much the embedding S can distort the set E. If we
can control the minimum and maximum restricted singular values of S then we can control the
approximation quality of the embedding S. The following analysis will be based on choosing
S to be a Gaussian embedding.

Definition 4. A Gaussian embedding S = Γ ∈ Rd×n has entries Γij
i.i.d∼ N (0, d−1). Note that the

variance of the distribution is to normalize the norm of x such that

E ‖Γx‖22 = ‖x‖22 , ∀x ∈ Rn.

Definition 5. Given E ⊆ Rn, the Gaussian width of E is defined to be

ω(E) := Eg

[
sup
x∈E
〈g, x〉

]
where g ∈ Rn has i.i.d. N (0, 1) entries.

The Gaussian width can be thought of as another fundamental geometric property of any
E ⊆ R alongside volume and surface area. For example, the Gaussian width of a unit n − 1-
sphere Sn−1 is asymptotically

√
n. A great reference for the Gaussian width and other proba-

bilistic methods can be found in Section 7.5 of Vershynin (2018) which is also freely available
online.

The Gaussian width has some nice properties:

• ω(QE) = ω(E) for any orthogonal Q where QE := {Qx | x ∈ E}

• E ⊆ F implies ω(E) ≤ ω(F )

• 0 ≤ ω(E) ≤
√
n

Proposition 1. If V is a k dimensional subspace and E = V ∩ Sn−1, we have
√
k − 1 ≤ ω(E) ≤

√
k.

Thus the squared Gaussian width in some sense captures the “dimensionality” of E even
though E may not be a subspace.

The following theorem from Gordon (1988) shows that the Gaussian width can be used to
control minimum and maximum restricted singular values with respect to a subset on the unit
sphere.

Theorem 2. Fix E ⊆ Sn−1(R) and let Γ ∈ Rd×n have i.i.d. N (0, d−1) entries. Then

P{σmin(Γ, E) ≤ 1− ω(E) + 1√
d

− t} ≤ e−dt2/2 (4)

P{σmax(Γ, E) ≥ 1 +
ω(E)√
d

+ t} ≤ e−dt2/2. (5)

Remark 1. Notice that neither the bound nor the probability depends on the input dimension
n. These theorems should be thought of as giving high probability upper bounds on σmax and
lower bounds on σmin which you may recall correspond to how much Γ perturbs E.
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Remark 2. The theorem also leads to the following relation.

1− ω(E) + 1√
d

/ σmin(Γ, E) ≤ σmax(Γ, E) / 1 +
ω(E)√
d

(6)

This implies that setting d > (ω(E) + 1)2 ensures that the embedding Γ annihilates a point in
E with low probability.

Lastly, a generalization of the Bai-Yin Law in Section 5.2 of Bai and Silverstein (2010) im-
plies that the bounds in Equation 6 are nearly optimal.

Theorem 3. Let E = Sn−1 and let Γ ∈ Rd×n have i.i.d. N (0, d−1) entries. Then

1−
√
n

d
/ Eσmin(Γ, E) ≤ Eσmax(Γ, E) ≤ 1 +

√
n

d
(7)

as n, d→∞ with n/d fixed in [0, 1].

Note that this wouldn’t apply if d < n which is the typical setting for low dimensional
embeddings.

2 Johnson-Lindenstrauss as a random matrix embedding

The Johnson-Lindenstrauss theorem shows that random projections of a set of points to a lower
dimension will approximately preserve pairwise distances. The classic dimension reduction
problem introduced in Johnson and Lindenstrauss (1984) is a special case of low dimensional
embeddings with a specific E which turns out to be a Gaussian embedding.

Thus the setting is: given ε > 0 and a discrete set of N points, {a1, . . . , aN} ⊂ Rn, does a
Gaussian embedding Γ ∈ Rd×n preserve all pairwise distances? In other words, is

(1− ε) ≤
‖Γ(ai − aj)‖2
‖ai − aj‖2

≤ (1 + ε) ∀i 6= j ? (8)

Consider E = { ai−aj
‖ai−aj‖2

| i, j = 1, . . . , N, i 6= j} so that ω(E) ≤
√

2 log |E| < 2
√

logN/2.
Plugging this upper bound on ω(E) into Theorem 2, it can be shown that

P{σmin(Γ, E) ≤ 1− (1 + 2
√

logN/2)/
√
d− t} ≤ e−dt2/2 (9)

P{σmax(Γ, E) ≥ 1 + 2
√

logN/2/
√
d+ t} ≤ e−dt2/2 (10)

Remark 3. Given a fixed accuracy ε, choosing d ≥ 8ε−2 logN achieves Equation 8 with high
probability. While the sufficient embedding dimension is logarithmic with respect to the num-
ber of points N , it has a quadratic dependence on ε−1. This leads to requiring a relatively large
number of embedding dimensions even for ε close to 1, and thus more practical approaches
have focused more towards bounding the minimum restricted singular value to avoid coalesc-
ing any of the points in E.

3 How general is this phenomenon for random matrices?

It can be shown that this low dimensional embedding phenomenon for random matrices is
“universal”: a large family of randomized dimension reduction embeddings including Rademacher
matrices and random sparse matrices share the same high probability bound on the mini-
mum restricted singular value. All that is required is that certain moments of their entries are
bounded in expectation. Below is a simplified version of Theorem 9.1 from Oymak and Tropp
(2017).
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Theorem 4. Fix E ⊆ Sn−1(R) and let S ∈ Rd×n be random with independent entries satisfying:

1. E[Sij ] = 0

2. E[S2
ij ] = d−1

3. E[S5
ij ] ≤ R.

When d ≤ n, we have with high probability,

σmin(S,E) ≥ 1− ω(E)√
d
− o

(√
n

d

)
(11)

where the constant in the little-o depends only on R.

Note that the entries of S don’t need to be from the same distribution. The fact that R is
uniform over i, j is key to the proof of this theorem.

4 Sparse random matrix embeddings

It would be great if we can have a embedding S that allows us to compute Sx quickly. If
S ∈ Rd×n is dense, then multiplying a vector by S is O(dn). One way to reduce the time
complexity would be to have an embedding S that is sparse which would take only O(nnz(S))
time to compute a matrix-vector multiplication Sx. Indeed, the following theorem from Cohen
(2016) shows that sparse subspace embeddings do exist with the target dimension having a
sub-quadratic dependence on the subspace dimension.

Theorem 5. Let S ∈ Rd×n. For 2 ≤ γ ≤ d where γ is an integer, let

S =

√
n

γ
[s1, . . . , sn]

where si ∈ Rd are i.i.d. vectors uniformly sampled from vectors with γ ones in Rd. For a constant ε, S
is an accurate embedding for subspace V with dimension k as long as d = O(k log k) and γ = O(log k)
where ε is hidden in the asymptotic notation.
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