
CS 6220

Lecture 7: Blendenpik
February 11, 2020

Lecturer: Anil Damle Scribe: Ariel Kellison

1 Introduction
Blendenpik is a randomized least squares solver that uses an iterative least squares algorithm
(LSQR) with a preconditioner obtained from random projection methods. The random projection
preconditioner generated by Blendenpik yields faster convergence of LSQR than LSQR without
a preconditioner, even for ill-conditioned systems. Furthermore, on large matrices, Blendenpik is
substantially faster than LAPACK.

1.1 Motivation
Consider the linear least squares problem

min
x∈Rn
‖Ax− b‖2, (1)

for a large highly overdetermined system: A ∈ Rm×n, b ∈ Rm, m >> n, and rank(A) = n. The
unique minimum length solution to (1) is determined by computing x∗:

x∗ = arg min ‖x‖2 subject to x ∈ arg min
z
‖Az − b‖2 (2)

Given the problem description it is reasonable to wonder if there is superfluous information in the
system. In particular, can a problem of smaller size be generated from a subset S of the rows of A
such that

xS = arg min
x
‖A(S, :)x− b(S)‖2 (3)

is a good approximation to x∗? Blendenpik achieves such an approximation by generating a prob-
lem of smaller size using a unitary transformation (i.e. a Walsh–Hadamard transform, a discrete
cosine transform, or a discrete Hartley transform) for blending the rows/column of A, and then
taking a random sampling of the rows of the result.

2 Blendenpik
The essence of the Blendenpik algorithm given problem (1) can be summarized in three steps:

1. Pick S of size r, a subset of the rows of A such that m ≥ r ≥ n

1

2. Let A(S, :) = QR

3. Use R−1 as a right preconditioner for (1) in LSQR

The convergence rate of LSQR is related to the condition number of the normal equations matrix
ATA; in many applications, this matrix is ill-conditioned. LSQR applied to a preconditioned
system where the right preconditioner R is determined such that A(:, :) = QR, converges in a
single iteration: the preconditioned normal equations matrix is (AR−1)T (AR−1) = QTQ = I . To
obtain a feasible preconditioner for LSQR, Blendenpik takes a uniform random sampling of the
blended rows of A.

2.1 Uniform Sampling (Row Picking)
Uniform random sampling of the rows of A is a suitable approach for generating preconditioners
when the solution is relatively independent of specific rows of A. The coherence of a matrix
provides a measure of the dependence of the solution on specific rows. Thus, uniform random
sampling of the rows of A is a suitable approach only if the coherence of A is small (that is, when
A is incoherent).

Definition 2.1. Let A be an n × n full rank matrix and let U be an n × n matrix whose columns
form an orthonormal basis for the column space of A. The coherence of A is defined as

µ(A) = max
i
‖U(i, :)‖22,

with n
m
≤ µ(A) ≤ 1.

While the coherence of A is independent of the condition number of A, there is a relationship
between the coherence of A, the sample size (r) of the rows of A, and the condition number of the
preconditioned system [1]:

Theorem 2.2. Let A be an m×n full rank matrix and let S be a subset of [m] of size r ≥ n chosen

uniformly at random such that rank(A(S, :)) = n. Let τ = C
√

mµ(A)log(r)
r

where C is a constant
defined in the proof. For some δ ∈ (0, 1), assume that δ−1τ < 1. With probability of at least 1− δ,
the sampled matrixA(S, :) is full column rank, and ifA(S, :) = QR is a reducedQR factorization
of A(S, :), then

κ(AR−1) ≤ 1 + δ−1τ

1− δ−1τ
.

Before proving Theorem 2.2, a relationship between the condition number of the precondi-
tioned system and the condition number of a subsampling of an orthonormal basis of A must be
established:

2

Theorem 2.3. Suppose that r,m, and n are postive integers such that m ≥ r ≥ n. Additionally,
suppose that the SVD of A ∈ Rm×n is

Am×n = Um×nΣn×nV
T
n×n.

Let S be a subset of [m] of size r and suppose that the matrix U(S, :) ∈ Rr×n has full rank. Then
there exists a matrix Q ∈ Rr×n with orthonormal columns and a matrix R ∈ Rn×n such that

A(S, :) = Qr×nRn×n

and the condition numbers of AR−1 and U(S, :) are equal.

The proof of Theorem 2.3 follows from Lemma 2.4.

Lemma 2.4. Suppose that r,m, and n are postive integers such that m ≥ r ≥ n. Additionally,
suppose that the SVD of A ∈ Rm×n is

Am×n = Um×nΣn×nV
T
n×n. (4)

Let S be a subset of [m] of size r and suppose that the SVD of the matrix U(S, :) ∈ Rr×n is

U(S, :) = Ũr×nΣ̃n×nṼ
T
n×n. (5)

Then there exists a matrix Q ∈ Rr×n with orthonormal columns and a matrix R ∈ Rn×n such that

A(S, :) = QR.

Finally, if rank(A) = rank(U(S, :)) = n, then there exists a unitary matrix W ∈ Rn×n such
that

R = Wn×nΣ̃n×nṼ
T
n×nΣn×nV

T
n×n. (6)

Proof. (Of Theorem 2.3) The proof of the existence of matrices R, Q, and W follow from Lemma
2.4; interested readers can refer to Lemma 3 in [4] for the proof of Lemma 2.4. From (4), (6), and
the fact that V , Ṽ and W are all unitary, it follows that

Am×nR
−1
n×n = Um×nṼn×nΣ̃n×nW

T
n×n,

‖(Am×nR−1n×n)T (Am×nR
−1
n×n)‖ = ‖Σ̃n×n‖22,

and
‖((Am×nR−1n×n)T (Am×nR

−1
n×n))−1‖ = ‖Σ̃n×n‖22.

Furthermore, from (5), it follows that

‖U(S, :)‖2 = ‖Σ̃n×n‖22.

3

Finally, the proof of Theorem 2.2 follows from Lemma 2.5 [2].

Lemma 2.5. Let U be an m× n matrix whose columns are orthonormal, and let S be a subset of
of [m] of size r ≤ m chosen uniformly at random. Then,

E(‖In×n −
m

r
U(S, :)TU(S, :)‖2) ≤ C

√
mµ(U)log(r)

r

for some constant C.

Proof. (of Theorem 2.2) Lemma 2.5 yields

E(‖In×n − (
m

r
)U(S, :)TU(S, :)‖2) ≤ τ.

Using Markov’s inequality it then follows that

Pr(‖In×n − (
m

r
)U(S, :)TU(S, :)‖2 ≥ δ−1τ) ≤ δ.

Thus, with probability 1− δ,

‖In×n − (
m

r
)U(S, :)TU(S, :)‖2 < δ−1τ < 1 (7)

and A(S, :) is full column rank. Note that if A(S, :) is full-rank, then so is U(S, :) and from
Theorem 2.3, κ(AR−1) = κ(U(S, :)). Now, the desired bound on κ(U(S, :)) follows from a
Rayleigh quotient argument: Note that each eigenvalue of the matrix M = (m

r
)U(S, :)TU(S, :), is

equal to the Rayleigh quotient R(M,x) for some x 6= 0. In particular,

λ = (
m

r
)
xTx

xTx

=
xTx+ xT (M − In×n)x

xTx
= 1− η,

where η = R(In×n −M,x). From (7) and the observation that In×n −M is symmetric, it follows
that |η| < δ−1τ . Thus, the eigenvalues of M lie between 1− δ−1τ and 1 + δ−1τ . It follows that

κ(AR−1) = κ(U(S, :)) ≤
√

1 + δ−1τ

1− δ−1τ

as desired.

4

2.2 Preprocessing (Row Blending)
Observe that Theorem 2.2 implies that, to obtain suitable preconditioners with high probability for
highly coherent systems, it is necessary to sample a large number of rows of A. Unfortunately,
it is both challenging to estimate the coherence of A and computationally impractical to sample
a large number of rows of A. This problem can be avoided by blending the rows of A using a
unitary transformation (i.e. a Walsh–Hadamard transform, a discrete cosine transform, or a discrete
Hartley transform) to decrease the coherence of A while also preserving the condition number of
A. In particular, for any unitary G ∈ Rm×m,

1. κ(GAR−1) = κ(AR−1),

2. right preconditioners for GAR−1 are also right preconditioners for AR−1, and

3. in general, µ(GA) 6= µ(A) .

The following theorem provides a bound on the coherence of GA [1]. Interested readers will see
that this is a generalization of Lemma 3 in [3].

Theorem 2.6. Let A ∈ Rm×n be a full rank matrix with m ≥ n. Let F ∈ Rm×m be a unitary
matrix, and letD be a diagonal matrix with Pr(Dii = ±1) = 1

2
. IfG = FD, then with probability

of at least 0.95
µ(GA) ≤ Cnηlog(m),

where η = max |Fij|2 and C is some constant.

Thus, a suitable choice of G for blending the rows of A is one where the value of max |Fij|2 is
small. Note that, for the minimal value of 1

m
for η, each entry of F must have a squared absolute

value equal to 1
m

. A normalized Discrete Fourier Transform (DFT) matrix and a Walsh-Hadamard
Transform (WHT) matrix satisfy this condition. Note that the WHT can be applied only if the num-
ber of rows ofA is a power of two; paddingAwith zeros enables application of the WHT to smaller
matrices. In practice, the choice of a DFT matrix for F has the drawback of operation-count and
memory penalties because it involves complex numbers [1]. The Blendenpik algorithm outlined
in Algorithm 1 will involve the WHT. Table 1 provides a brief comparison of the advantages and
disadvantages of different row mixing strategies.

2.3 Algorithm and Computational Cost
The three phases (see Section 2) of the Blendenpik algorithm (see Algorithm 1) have different
computational cost. The number of LSQR iterations required for convergence for matrices with
m >> n (e.g n ∼ m

40
) depends on the coherence and size of the matrix; for ease of comparison

here, one can consider a matrix with m ∼ 4E4. From Section 5 of [1], we see that approximately
40 (60) LSQR iterations are required for incoherent (coherent) matrices. Thus, the most expensive
phase is LSQR: each iteration takes Θ(mn) time. The QR factorization of the blended matrix has
the second highest cost, with running time Θ(n3). Finally, the blending phase is the least costly,
with running time Θ(mnlog(m)).

5

Table 1: Comparison of the advantages and disadvantages of different row mixing strategies
Transformation η value Advantages Disadvantages

DFT 1/m Fast application Poor op. count/ memory.
WHT 1/m Theoretically optimal; Erratic

on coherent matrices in practice.
Can only be applied if m % 2 =
0; Padding causes discontinuous
increases in run time/ memory.

DCT 2/m Exists for all vector sizes. Works
well on coherent matrices in
practice.

Application is slow (dependent
on factorization of m).

DHT 2/m Exists for all vector sizes. Works
well on coherent matrices in
practice.

Application is slow (dependent
on factorization of m).

Algorithm 1: Blendenpik’s Algorithm
1 x = blendenpik(A ∈ Rm×n, b ∈ Rn)
2 . m ≥ n, A is nonsingular
3 . parameters: γ and transform type (set here as WHT)
4 // Pad A appropriately for WHT.
5 m̃← 2dlog2me

6 M←
[
A
0

]
∈ Rm̃×n

7 while not returned do
8 // D is a diagonal matrix with ±1 on its diagonal with

equal probability
9 // Fm̃ is the transform type, set here as WHT

10 M← Fm̃(DM)

11 Let S ∈ Rm̃×m̃ be a random diagonal matrix: Sii =

{
1 with probabilityγn

m̃

0 with probability1− γn
m̃

// Subsample the non-zero rows of SM
12 Y← SM
13 Compute R ∈ Rn×n where Y = QR
14 κr ← estimate κ(R) using LAPACK
15 if κr > 5εmachine then
16 x← LSQR(A, b, R, 10−14)
17 return x
18 else
19 if #iterations>3 then
20 failure: compute x using LAPACK
21 return x
22 end
23 end
24 end 6

References
[1] Avron, Maymounkov, and Toledo. A fast randomized algorithm for overdetermined linear

least-squares regression. SIAM J. on Scientific Computing, 32(3):1217–1236, 2010.

[2] Haim Avron. Efficient and Robust Hybrid Iterative-Direct Multipurpose Linear Solvers. PhD
thesis, Tel-Aviv University, Israel, October 2010.

[3] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and Tamás Sarlós. Faster least
squares approximation. Numer. Math., 117(2):219–249, February 2011.

[4] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear
least-squares regression. Proceedings of the National Academy of Sciences, 105(36):13212–
13217, 2008.

7

