
CS 6220 Data-Sparse Matrix Computations September 19, 2017

Lecture 9: Krylov Subspace Methods

Lecturer: Anil Damle

Scribes: David Eriksson, Marc Aurele Gilles, Ariah Klages-Mundt, Sophia Novitzky

1 Introduction

In the last lecture, we discussed two methods for producing an orthogonal basis for the
Krylov subspaces Kk (A, b)

Kk (A, b) = span{b, Ab,A2b, . . . , Ak−1b}

of a matrix A and a vector b: the Lanczos and Arnoldi methods. In this lecture, we will
use the Lanczos method in an iterative algorithm to solve linear systems Ax = b, when A
is positive definite. This algorithm is called the Conjugate Gradient (CG) algorithm. We
will show that its time complexity in each step k does not depend on the number of steps
preceding it, and discuss convergence of the algorithm.

2 Derivation of the Conjugate Gradient Algorithm

Consider the following optimization problem over Kk (A, b):

xk = arg min
x∈Kk(A,b)

1

2
‖x−A−1b‖2A.

Assuming A is symmetric positive definite, recall that after k steps, the Lanczos method
gives us a basis for the kth Krylov Kk (A, b) space via

AVk = Vk+1T̃k.

Here T̃k is a square matrix given by

T̃k =


0

Tk
...
0

0 . . . 0 −βkeTk

 .

Tk is a tridiagonal matrix, and Vk has orthogonal columns. We will consider Algorithm 1
for solving Ax = b.

Naively, it looks like this algorithm would cost one matrix-vector multiplication Aq (to
perform an iteration of Lanczos) and a trilinear solve with a matrix of size k × k thus it
looks like the cost of each iteration increases with the number of steps taken k. However,
one can show that there is no k dependence because of the 3 term recursion. We will now

9: Krylov Subspace Methods -1

Algorithm 1: Conjugate gradient algorithm (Explicit form)

for step k do
Run step k of the Lanczos method
Solve Tky

(k) = ‖b‖e1

Let x(k) = Vky
(k)

end

show that the added calculations at each step can also be performed in time that does not
depend on k.

Observe that

Tk+1 =


0

Tk
...
0
βk

0 . . . 0 βk αk+1

 .

Take Tk = LkDkL
T
k , an LDLT factorization. Then we can get Tk+1 = Lk+1Dk+1L

T
k+1 in

O(1) work. Furthermore, we can go from z(k) = LTk y
(k) to z(k+1) = LTk+1y

(k+1) in O(1)

work since Tky
(k) = LkDkL

T
k y

(k) = ‖b‖e1. We have for some ζk+1,

z(k+1) =

[
z(k)

ζk+1

]
,

so we can write
x(k+1) = Vk+1y

(k+1)

= Vk+1Iy
(k+1)

= Vk+1L
−T
k+1L

T
k+1y

(k+1)

= Vk+1L
−T
k+1z

(k+1).

Now let Ck = VkL
−T
k =

[
c1 · · · ck

]
, where c1, . . . , ck are the columns of Ck. Then

x(k+1) = Ck+1z
(k+1)

= Ckz
(k) + ck+1ζk+1

= x(k) + ck+1ζk+1.

We can compute ck+1 and ζk+1 in time that does not depend on k (in O(n) in general as
it involves vector multiplication). And so we can update x(k) to x(k+1) in time independent
of k. I.e., the steps do not become more expensive the further into the algorithm that we go.

9: Krylov Subspace Methods -2

After some algebra, the CG can be rewritten as Algorithm 2.

Algorithm 2: Conjugate gradient algorithm (Explicit form)

x0 = 0
r0 = b
p0 = b
for k = 1 to K do

αk = 〈rk,rk〉
〈pk,Apk〉

xk+1 = xk + αkpk
rk+1 = rk − αkApk
βk =

〈rk+1,rk+1〉
〈rk,rk〉

pk+1 = rk+1 + βkpk
end

This form makes it clear that the computational cost of one CG iterate is one matrix
multiply, 3 vector inner products and 3 scalar vector product and 3 vector addition. It also
only requires storage for 3 vectors at any iteration.

A completely equivalent way to derive CG is through the minimization of the following
quadratic:

xk = arg min
x∈Kk(A,b)

1

2
‖x−A−1b‖2A. (1)

The derivation from this point of view is included in most textbooks, e.g., see [1].

3 Convergence and stopping criteria

3.1 Monitoring residual

We now consider when to stop the conjugate gradient method. One stopping criterion is to
monitor the residual

rk := b−Ax(k)

and stop when ‖rk‖2 is smaller than some threshold. Notice we can’t use the error metric
defined in 1 as it requires to know the true solution x∗.

Observe that via Lanczos

‖rk‖2 = ‖b−AVky(k)‖2
= ‖Vk+1(‖b‖e1)− Vk+1T̃ky

(k)‖2

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣Vk+1



‖b‖
0
...
0

−
[
Tk
βke

T
k

]
y(k)


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

= ‖Vk+1(βk(e
T
k y

(k))ek+1)‖2 ∝ ‖Vk+1‖2,

where the simplification of the vector from the second-to-last line to the last line comes
from the fact that we’ve constructed y(k) in the Lanczos algorithm so that it satisfies this

9: Krylov Subspace Methods -3

(i.e., Tky
(k) = ‖b‖e1). This shows that the kth residual is proportional to the (k + 1)st

Krylov vector.
If Vk+1 is orthonormal, then it drops out of the 2 norm and we just get the norm of the

vector. However, in floating point arithmetic, Vk may not have orthogonal columns. Even
in this case we have

‖rk‖2 ≤ ‖Vk+1‖2|βk(eTk y(k))|.

and since the columns of Vk have norm one, ‖Vk+1‖2 is typically close to one even in floating
point arithmetic.

3.2 Convergence

Recall that the k-th Krylov subspace of the matrix A and vector b is:

Kk (A, b) = span{b, Ab,A2b, . . . , Ak−1b}

Therefore,

x ∈ Kk (A, b) ⇐⇒ x =
k−1∑
j=0

αjA
jb =

k−1∑
j=0

αjA
j

 b = p(A)b

where p(x) is a 1-dimensional polynomial of degree k − 1 with coefficients {αj}k−1
j=0 . Let

x∗ = A−1b, recall that the xk, the k-th iterate of CG is chosen such that it minimizes the
error in the A-norm over the k-th Krylov subspace, i.e.:

xk = arg min
x∈Kk(A,b)

‖x− x∗‖A.

Using the observation above, we can rewrite this error metric as a polynomial approximation
problem:

‖x− x∗‖A = ‖p(A)b−A−1b‖A
= ‖p(A)AA−1b−A−1b‖A
= ‖(p(A)A− I)A−1b‖A
≤ ‖(I − p(A)A)‖2‖A−1b‖A.

Note that if p(x) is a k−1 degree polynomial, then q(x) = 1−xp(x) is a k degree polynomial
with q(0) = 1. Let Pk,0 be the subspace of such polynomial q, that is

Pk,0 = {q(x) | q(x) ∈ Pk,0, q(0) = 1}

Furthermore, by the argument above, for all x ∈ pk, there exist a polynomial q such that
‖x− x∗‖A ≤ ‖q(A)‖2‖A−1b‖A. To summarize, we have shown that:

‖xk − x∗‖A
‖x∗‖A

≤ min
q∈Pk,0

‖(q(A))‖2. (2)

9: Krylov Subspace Methods -4

Consider the eigenvalue decomposition of A, A = V ΣV −1. A is SPD, therefore its
eigenvalues are real and positive, and V −1 = V T . Note that

Ai = AA · · ·A = V ΣV −1V ΣV −1 · · ·V ΣV −1 = V ΣiV T .

Therefore for any polynomial A

p(A) =

k∑
i=0

αiA
i

=
k∑
i=0

αiV ΣiV T

= V
k∑
i=0

αiΣiV
T

= V p(Σ)iV T

(This is a special case of the spectral theorem). Let Λ(A) be the set of eigenvalues of A,
then using this observation we can rewrite 2 as:

‖xk − x∗‖A
‖x∗‖A

≤ min
q∈Pk,0

‖q(A)‖2

= min
q∈Pk,0

‖V q(σ)V T ‖2

≤ min
q∈Pk,0

‖V ‖‖V ‖T ‖q(σ)‖2

= min
q∈Pk,0

‖q(Σ)‖2

where we have used that V is orthogonal, thus ‖V ‖2 = ‖V T ‖2 = 1. Recall the definition of
the spectral norm: ‖A‖2 = maxi σi(A), where σi are the singular values of A which coincide
with the eigenvalues as A is SPD. This allows us to rewrite the bound one more time as:

‖xk − x∗‖A
‖x∗‖A

≤ min
q∈Pk,0

max
λ∈Λ(A)

|q(λ)| (3)

This is a remarkable result, which lets us reason about the convergence of CG in terms
of the minimization of a polynomial over a set of discrete points. Much of the theory and
intuition we have about the convergence of CG comes from this inequality.

This bound implies that the convergence of CG on a given problem depends strongly on
the eigenvalues of A. When the eigenvalues of A are spread out it is hard to find such p, and
the degree of the polynomial (k ∈ N) has to be greater, which means that the algorithm
requires more iterations. The figure 1 illustrates the challenge. Neither the first nor the
second degree polynomial give desired results. When the eigenvalues don’t form any groups,
the polynomial degree may have to be as large as the number of eigenvalues of A.

9: Krylov Subspace Methods -5

Figure 1: Polynomial fitting for A with eigenvalues spread out.

Figure 2: Polynomial fitting for clustered eigenvalues. The less clusters are present, the
smaller polynomial degree k is required.

The task is easier when the eigenvalues are clustered. The fewer and tighter the clusters
are, the smaller k (degree of the polynomial) is required to attain a good upper bound
on algorithm error. Figure 2 shows two different cases of clustered eigenvalues. If there
are three clusters as on the left plot, a third degree polynomial performs well. When all
eigenvalues are in one cluster like in the plot on the right, a first degree polynomial is
sufficient. This dependence on the eigenvalues of A is the true reason why the algorithm
works so well in practice.

Equation (3) is a strong statement, but one that is difficult to apply. Indeed, we usually
don’t know the distribution of eigenvalues of our matrix A, and even if we did, the polyno-
mial minimization problem on a discrete set is very difficult to solve. We now give another
bound which is must weaker but is something we can usually estimate.

Let λ1, λn be the smallest and largest eigenvalue of A respectively. Clearly, Λ(A) ⊂

9: Krylov Subspace Methods -6

[λ1, λn]. This implies that

min
q∈Pk,0

max
λ∈Λ(A)

|q(λ)| ≤ min
q∈Pk,0

max
λ∈[λ1,λn]

|q(λ)|. (4)

The right hand side of the equation is much easier to solve than the left hand side be-
cause it involves a continuous interval. It is related to the Chebyshev polynomials Tn(x)
characterized by:

Tn(x) = cos (n arccos (x)) for ‖x‖ ≤ 1.

Lemma 1 The minimax problem:

min
q∈Pk,0

max
λ∈[λ1,λn]

|q(λ)| (5)

is solved by the polynomial

Pi(x) =
Ti(

λn+λ1−2x
λn−λ1)

Ti

(
λn+λ1
λn−λ1

)
Furthermore,

Pi(x) ≤ 2

(√
κ− 1√
κ+ 1

)i
where κ = λn

λ1
(called the condition number of A).

The proof of this lemma can be found in [2]. This implies directly the following theorem:

Theorem 2 Let xk be the kth iterate of CG, and κ be the condition number of the matrix
A, then:

‖xk − x∗‖A
‖x∗‖A

≤ 2

(√
κ− 1√
κ+ 1

)k
(6)

References

[1] Gene H. Golub and Van Loan Charles F. Matrix computation. Johns Hopkins University
Press, 1990.

[2] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method
without the agonizing pain. 1994.

9: Krylov Subspace Methods -7

	Introduction
	Derivation of the Conjugate Gradient Algorithm
	Convergence and stopping criteria
	Monitoring residual
	Convergence

