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1 Introduction
In last lecture, we gave a brief introduction to krylov subspace methods. The
basic setting of this kind of methods is as follows:

1. We have a black box which computes Az and returns it.

2. We build an iterative method which generates a sequence z*) — z with
Ar=bask — oo.

3. We decide to consider
™) € K (A,b) = spani{b, Ab, ..., AF=Vp}
The subspace mentioned above is krylov subspace, which has the following prop-
erties:
1. It can be constructed just with the black box
2. Kr(A,b) C Kiri1(A,b)
3. Tt motivates considering z(*) = P, (A)b

Krylov sequences [b, Ab, ..., A¥~1b] forms a basis for Krylov subspace but it is
ill-conditioned. It is better to work with an orthonormal basis.
Next we will introduce two algorithms to build orthonormal basis.



2 Arnoldi algorithm

2.1 Hessenberg Reduction

Given a n X n matrix A, we can compute an orthogonal matrix () and an upper
Hessenberg matrix H (upper triangular and one sub-diagonal) s.t. A = QHQ*.
For iterative methods, we take the view that n is huger of infinite. Thus
instead of considering the full @), we consider the first k£ column of AQ = QH.
Let Qg be the first k& columns of matrix Q and Hy the upper left (k+1)xk
block of H. That is,

-hl,l h172 hl,k
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Thus AQ; = Qk+1ﬁk, which means that
Agi = h1 k1 + hokgo + ... + A kG + Pit1, kGl+1

That is, qx+1 satisfies an (k+ 1)-term recurrence relation involving itself and
previous Krylov vectors.

Therefore, "h”s just correspond to modified Gram-Schmidt orthogonaliza-
tion. And Arnoldi algorithm is simply the modified Gram-Schmidt iteration
that implements the above equation.

2.2 Arnoldi Algorithm

The following is Arnoldi algorithm:
Arnoldi Algorithm:

Initialize b as a random vector, q1 = Hlﬁlz
for k=1,2,... do
vV = Aqk
for j=1,2,...k do
hjk = q‘;‘V
v =V — h;;q;j
end for

P16 = |[V]]2
i1 = V/heg1k
end for

Given this algorithm, Qx = [q1, q2, ..., qk] is an orthonormal basis for IC,, (A, b).
Note that AQy = Qk;_l,_lﬁk; where Hy, is [ Hy, }

P41 ker
10 ... 00
01 ... 00 %
Thus we have Q;AQk = |: : N {h k T] =Hj, where Hy, is
. . . . . k+1,k€L
0 : 0 10

tridiagonal and can be interpreted as the representation in the basis {q1, q2, ..., qx }
of the orthogonal projection of A onto K.



3 Lanczos Algorithm

Lanczos algorithm builds an orthonormal basis for Krylov subspace for hermi-
tian matrix(that is, a complex square matrix that is equal to its own conjugate
transpose). The following is Lanczos algorithm:

Lanczos Algorithm:

Given A = A* initialize b as a random vector, Sy = 0,qo = 0,q1 = bl
for k=1,2,... do
v = Aqx
Qg = QkTV
V=V — Brt10K+1 — dx
Br = [Ivl]2
dk+1 = V/Bk
end for
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If we define Ty= 0 B2 az Bz ... 0| Then we have AQy =
0 0 0 ... PBr1 oy
Qka where Tk = |: TkT:|
/Bkek

Vk, qi is a three-term recurrence relation involving itself and previous Krylov
vectors, which is computational efficient.

4 Solving the system in coordinate space

Having defined the basis for Krylov subspace, we want to solve Az = b with
z®) € K}, (A,b) and 0 as our initial guess.

Thus z(*) should be the "best” vector in K (A, b) where "best” means z(*) =
argmingesc, (4,p) || Az — b||3. This can be done via MINRES[1] if A = A* or via
GMRES|2] in more general cases.

What if we want to solve z(®) = argmin,ei, (ap ||z — A710[3 = 2Tz +
BTATA b — 2T A0 — bT A~ T2? The problem is that A~! cannot be elimi-
nated.

5 Conjugate Gradient

Conjugate gradient is a kind of Krylov space solver that only applies to systems
that are symmetric positive definite(spd).

The goal of conjugate gradient is to solve the problem z(*) = argmingejc, (a,p) ||2—
A~1b|% where A is spd.

This can be written as argmin, cgr [|Qry—A~1b||% = argmin,cpr y* QF AQry+
bITA=Y — 2y QT = argmin, cgr y Ty — 2yTeq||b]|2

Take derivative and set it equal to zero, we will have Tiy — ||b||2e1 = 0, that
is, Try = ||b]|e1-



In conclusion, when solving Az = b using Krylov subspace method, we run
Lanczos with A,b at each step to get Q1 and Tj. Then we solve Qry*®) = ||b||2€1
and set z(F) = Qy(¥).
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