Data Sparse Matrix Computation Lecture 8: Krylov Subspace Methods

Yao Cheng

November 7, 2017

Contents

1	Introduction	1
2	Arnoldi algorithm2.1Hessenberg Reduction2.2Arnoldi Algorithm	2 2 2
3	Lanczos Algorithm	3
4	Solving the system in coordinate space	3
5	Conjugate Gradient	3
Re	eferences	4

1 Introduction

In last lecture, we gave a brief introduction to krylov subspace methods. The basic setting of this kind of methods is as follows:

- 1. We have a black box which computes Ax and returns it.
- 2. We build an iterative method which generates a sequence $x^{(k)} \to x$ with Ax = b as $k \to \infty$.
- 3. We decide to consider

$$x^{(k)} \in \mathcal{K}_k(A, b) = span\{b, Ab, \dots, A^{(k-1)}b\}$$

The subspace mentioned above is krylov subspace, which has the following properties:

- 1. It can be constructed just with the black box
- 2. $\mathcal{K}_k(A,b) \subseteq \mathcal{K}_{k+1}(A,b)$
- 3. It motivates considering $x^{(k)} = P_k(A)b$

Krylov sequences $[b, Ab, ..., A^{k-1}b]$ forms a basis for Krylov subspace but it is ill-conditioned. It is better to work with an orthonormal basis.

Next we will introduce two algorithms to build orthonormal basis.

$\mathbf{2}$ Arnoldi algorithm

2.1**Hessenberg Reduction**

Given a $n \times n$ matrix A, we can compute an orthogonal matrix Q and an upper Hessenberg matrix H(upper triangular and one sub-diagonal) s.t. $A = QHQ^*$.

For iterative methods, we take the view that n is huger of infinite. Thus instead of considering the full Q, we consider the first k column of AQ = QH.

Let Q_k be the first k columns of matrix Q and \hat{H}_k the upper left $(k+1) \times k$ block of H. That is,

						$h_{1,1}$	$h_{1,2}$	• • •	$h_{1,k}$
	[:	÷	÷	:		$h_{2,1}$	$h_{2,2}$		÷
$Q_k =$	q_1	q_2		q_k	$, \hat{H}_k =$	0	$h_{3,2}$		÷
	Ŀ	:	:	:		0	0	÷	$h_{k,k}$
						0	0	0	$h_{k+1,k}$

Thus $AQ_k = Q_{k+1}\hat{H}_k$, which means that

$$Aq_k = h_{1,k}q_1 + h_{2,k}q_2 + \dots + h_{k,k}q_k + h_{k+1,k}q_{k+1}$$

That is, q_{k+1} satisfies an (k+1)-term recurrence relation involving itself and previous Krylov vectors.

Therefore, "h"s just correspond to modified Gram-Schmidt orthogonalization. And Arnoldi algorithm is simply the modified Gram-Schmidt iteration that implements the above equation.

2.2Arnoldi Algorithm

The following is Arnoldi algorithm:

Arnoldi Algorithm: Initialize **b** as a random vector, $\mathbf{q_1} = \frac{\mathbf{b}}{||\mathbf{b}||_2}$ for k = 1, 2, ... do $\mathbf{v} = A\mathbf{q}_{\mathbf{k}}$ for j = 1, 2, ...k do $h_{jk} = \mathbf{q}_j^* \mathbf{v}$ $\mathbf{v} = \mathbf{v} - h_{jk} \mathbf{q}_j$ end for $h_{k+1,k} = ||\mathbf{v}||_2$ $\mathbf{q_{k+1}} = \mathbf{v}/h_{k+1,k}$ end for

Given this algorithm, $Q_k = [\mathbf{q_1}, \mathbf{q_2}, ..., \mathbf{q_k}]$ is an orthonormal basis for $\mathcal{K}_n(A, b)$.

Note that $AQ_k = Q_{k+1}\hat{H}_k$ where \hat{H}_k is $\begin{bmatrix} H_k \\ h_{k+1,k}e_k^T \end{bmatrix}$. Thus we have $Q_k^*AQ_k = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} H_k \\ h_{k+1,k}e_k^T \end{bmatrix} = H_k$, where H_k is $0 \div 0 1 0$

tridiagonal and can be interpreted as the representation in the basis $\{q_1, q_2, ..., q_k\}$ of the orthogonal projection of A onto \mathcal{K} .

3 Lanczos Algorithm

Lanczos algorithm builds an orthonormal basis for Krylov subspace for hermitian matrix(that is, a complex square matrix that is equal to its own conjugate transpose). The following is Lanczos algorithm:

Lanczos Algorithm: Given $A = A^*$, initialize **b** as a random vector, $\beta_0 = 0$, $\mathbf{q_0} = 0$, $\mathbf{q_1} = \frac{\mathbf{b}}{||\mathbf{b}||_2}$ for k = 1, 2, ... do $\mathbf{v} = A\mathbf{q_k}$ $\alpha_k = \mathbf{q_k}^T \mathbf{v}$ $\mathbf{v} = \mathbf{v} - \beta_{k+1}\mathbf{q_{k+1}} - \alpha_k\mathbf{q_k}$ $\beta_k = ||\mathbf{v}||_2$ $\mathbf{q_{k+1}} = \mathbf{v}/\beta_k$ end for If we define $T_k = \begin{bmatrix} \alpha_1 & \beta_1 & 0 & \dots & \dots & 0 \\ \beta_1 & \alpha_2 & \beta_2 & \dots & \dots & 0 \\ 0 & \beta_2 & \alpha_3 & \beta_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \beta_{k-1} & \alpha_k \end{bmatrix}$ Then we have $AQ_k = Q_k \hat{T}_k$ where $\hat{T}_k = \begin{bmatrix} T_k \\ \beta_k e_k^T \end{bmatrix}$

 $\forall k, q_k$ is a three-term recurrence relation involving itself and previous Krylov vectors, which is computational efficient.

4 Solving the system in coordinate space

Having defined the basis for Krylov subspace, we want to solve Ax = b with $x^{(k)} \in \mathcal{K}_k(A, b)$ and 0 as our initial guess.

Thus $x^{(k)}$ should be the "best" vector in $\mathcal{K}_k(A, b)$ where "best" means $x^{(k)} = \operatorname{argmin}_{x \in \mathcal{K}_k(A, b)} ||Ax - b||_2^2$. This can be done via MINRES[1] if $A = A^*$ or via GMRES[2] in more general cases.

What if we want to solve $x^{(k)} = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} ||x - A^{-1}b||_2^2 = x^T x + b^T A^{-T} A^{-1} b - x^T A^{-1} b - b^T A^{-T} x$? The problem is that A^{-1} cannot be eliminated.

5 Conjugate Gradient

Conjugate gradient is a kind of Krylov space solver that only applies to systems that are symmetric positive definite(spd).

The goal of conjugate gradient is to solve the problem $x^{(k)} = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} ||x - A^{-1}b||_A^2$ where A is spd.

This can be written as $\operatorname{argmin}_{y \in \mathbb{R}^k} ||Q_k y - A^{-1}b||_A^2 = \operatorname{argmin}_{y \in \mathbb{R}^k} y^T Q_k^T A Q_k y + b^T A^{-1}b - 2y^T Q_k^T b = \operatorname{argmin}_{y \in \mathbb{R}^k} y^T T_k y - 2y^T e_1 ||b||_2$

Take derivative and set it equal to zero, we will have $T_k y - ||b||_2 e_1 = 0$, that is, $T_k y = ||b||e_1$.

In conclusion, when solving Ax = b using Krylov subspace method, we run Lanczos with A, b at each step to get Q_k and T_k . Then we solve $Q_k y^{(k)} = ||b||_2 e_1$ and set $x^{(k)} = Q_k y^{(k)}$.

References

- Christopher C Paige and Michael A Saunders. Solution of sparse indefinite systems of linear equations. SIAM journal on numerical analysis, 12(4):617– 629, 1975.
- [2] Youcef Saad and Martin H Schultz. Conjugate gradient-like algorithms for solving nonsymmetric linear systems. *Mathematics of Computation*, 44(170):417-424, 1985.