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1 Introduction

In last lecture, we gave a brief introduction to krylov subspace methods. The
basic setting of this kind of methods is as follows:

1. We have a black box which computes Ax and returns it.

2. We build an iterative method which generates a sequence x(k) → x with
Ax = b as k →∞.

3. We decide to consider

x(k) ∈ Kk(A, b) = span{b, Ab, ..., A(k−1)b}

The subspace mentioned above is krylov subspace, which has the following prop-
erties:

1. It can be constructed just with the black box

2. Kk(A, b) ⊆ Kk+1(A, b)

3. It motivates considering x(k) = Pk(A)b

Krylov sequences [b, Ab, ..., Ak−1b] forms a basis for Krylov subspace but it is
ill-conditioned. It is better to work with an orthonormal basis.

Next we will introduce two algorithms to build orthonormal basis.
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2 Arnoldi algorithm

2.1 Hessenberg Reduction

Given a n×n matrix A, we can compute an orthogonal matrix Q and an upper
Hessenberg matrix H(upper triangular and one sub-diagonal) s.t. A = QHQ∗.

For iterative methods, we take the view that n is huger of infinite. Thus
instead of considering the full Q, we consider the first k column of AQ = QH.

Let Qk be the first k columns of matrix Q and Ĥk the upper left (k+ 1)× k
block of H. That is,

Qk =


...

...
...

...
q1 q2 . . . qk
...

...
...

...

, Ĥk =



h1,1 h1,2 . . . h1,k

h2,1 h2,2 . . .
...

0 h3,2 . . .
...

0 0
... hk,k

0 0 0 hk+1,k


Thus AQk = Qk+1Ĥk, which means that

Aqk = h1,kq1 + h2,kq2 + ...+ hk,kqk + hk+1,kqk+1

That is, qk+1 satisfies an (k+1)-term recurrence relation involving itself and
previous Krylov vectors.

Therefore, ”h”s just correspond to modified Gram-Schmidt orthogonaliza-
tion. And Arnoldi algorithm is simply the modified Gram-Schmidt iteration
that implements the above equation.

2.2 Arnoldi Algorithm

The following is Arnoldi algorithm:

Arnoldi Algorithm:
Initialize b as a random vector, q1 = b

||b||2
for k = 1, 2, ... do

v = Aqk

for j = 1, 2, ...k do
hjk = q∗jv
v = v − hjkqj

end for
hk+1,k = ||v||2
qk+1 = v/hk+1,k

end for

Given this algorithm, Qk = [q1,q2, ...,qk] is an orthonormal basis forKn(A, b).

Note that AQk = Qk+1Ĥk where Ĥk is

[
Hk

hk+1,ke
T
k

]
.

Thus we have Q∗kAQk =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0
... 0 1 0

 ·
[

Hk

hk+1,ke
T
k

]
=Hk, where Hk is

tridiagonal and can be interpreted as the representation in the basis {q1,q2, ...,qk}
of the orthogonal projection of A onto K.
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3 Lanczos Algorithm

Lanczos algorithm builds an orthonormal basis for Krylov subspace for hermi-
tian matrix(that is, a complex square matrix that is equal to its own conjugate
transpose). The following is Lanczos algorithm:

Lanczos Algorithm:
Given A = A∗,initialize b as a random vector, β0 = 0,q0 = 0,q1 = b

||b||2
for k = 1, 2, ... do

v = Aqk

αk = qk
Tv

v = v − βk+1qk+1 − αkqk

βk = ||v||2
qk+1 = v/βk

end for

If we define Tk=


α1 β1 0 . . . . . . 0
β1 α2 β2 . . . . . . 0
0 β2 α3 β3 . . . 0
...

...
...

...
...

...
0 0 0 . . . βk−1 αk

 Then we have AQk =

QkT̂k where T̂k =

[
Tk
βke

T
k

]
∀k, qk is a three-term recurrence relation involving itself and previous Krylov

vectors, which is computational efficient.

4 Solving the system in coordinate space

Having defined the basis for Krylov subspace, we want to solve Ax = b with
x(k) ∈ Kk(A, b) and 0 as our initial guess.

Thus x(k) should be the ”best” vector in Kk(A, b) where ”best” means x(k) =
argminx∈Kk(A,b) ||Ax− b||22. This can be done via MINRES[1] if A = A∗ or via
GMRES[2] in more general cases.

What if we want to solve x(k) = argminx∈Kk(A,b) ||x − A−1b||22 = xTx +
bTA−TA−1b − xTA−1b − bTA−Tx? The problem is that A−1 cannot be elimi-
nated.

5 Conjugate Gradient

Conjugate gradient is a kind of Krylov space solver that only applies to systems
that are symmetric positive definite(spd).

The goal of conjugate gradient is to solve the problem x(k) = argminx∈Kk(A,b) ||x−
A−1b||2A where A is spd.

This can be written as argminy∈Rk ||Qky−A−1b||2A = argminy∈Rk yTQT
kAQky+

bTA−1b− 2yTQT
k b = argminy∈Rk yTTky − 2yT e1||b||2

Take derivative and set it equal to zero, we will have Tky− ||b||2e1 = 0, that
is, Tky = ||b||e1.
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In conclusion, when solving Ax = b using Krylov subspace method, we run
Lanczos with A,b at each step to get Qk and Tk. Then we solve Qky

(k) = ||b||2e1
and set x(k) = Qky

(k).
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