Data Sparse Matrix Computation
 Lecture 8: Krylov Subspace Methods

Yao Cheng

November 7, 2017

Contents

1 Introduction 1
2 Arnoldi algorithm 2
2.1 Hessenberg Reduction 2
2.2 Arnoldi Algorithm 2
3 Lanczos Algorithm 3
4 Solving the system in coordinate space 3
5 Conjugate Gradient 3
References 4

1 Introduction

In last lecture, we gave a brief introduction to krylov subspace methods. The basic setting of this kind of methods is as follows:

1. We have a black box which computes $A x$ and returns it.
2. We build an iterative method which generates a sequence $x^{(k)} \rightarrow x$ with $A x=b$ as $k \rightarrow \infty$.
3. We decide to consider

$$
x^{(k)} \in \mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{(k-1)} b\right\}
$$

The subspace mentioned above is krylov subspace, which has the following properties:

1. It can be constructed just with the black box
2. $\mathcal{K}_{k}(A, b) \subseteq \mathcal{K}_{k+1}(A, b)$
3. It motivates considering $x^{(k)}=P_{k}(A) b$

Krylov sequences $\left[b, A b, \ldots, A^{k-1} b\right]$ forms a basis for Krylov subspace but it is ill-conditioned. It is better to work with an orthonormal basis.

Next we will introduce two algorithms to build orthonormal basis.

2 Arnoldi algorithm

2.1 Hessenberg Reduction

Given a $n \times n$ matrix A, we can compute an orthogonal matrix Q and an upper Hessenberg matrix H (upper triangular and one sub-diagonal) s.t. $A=Q H Q^{*}$.

For iterative methods, we take the view that n is huger of infinite. Thus instead of considering the full Q, we consider the first k column of $A Q=Q H$.

Let Q_{k} be the first k columns of matrix Q and \hat{H}_{k} the upper left $(k+1) \times k$ block of H. That is,

$$
Q_{k}=\left[\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
q_{1} & q_{2} & \ldots & q_{k} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right], \hat{H}_{k}=\left[\begin{array}{cccc}
h_{1,1} & h_{1,2} & \ldots & h_{1, k} \\
h_{2,1} & h_{2,2} & \ldots & \vdots \\
0 & h_{3,2} & \ldots & \vdots \\
0 & 0 & \vdots & h_{k, k} \\
0 & 0 & 0 & h_{k+1, k}
\end{array}\right]
$$

Thus $A Q_{k}=Q_{k+1} \hat{H}_{k}$, which means that

$$
A q_{k}=h_{1, k} q_{1}+h_{2, k} q_{2}+\ldots+h_{k, k} q_{k}+h_{k+1, k} q_{k+1}
$$

That is, q_{k+1} satisfies an $(k+1)$-term recurrence relation involving itself and previous Krylov vectors.

Therefore, " h "s just correspond to modified Gram-Schmidt orthogonalization. And Arnoldi algorithm is simply the modified Gram-Schmidt iteration that implements the above equation.

2.2 Arnoldi Algorithm

The following is Arnoldi algorithm:
Arnoldi Algorithm:
Initialize \mathbf{b} as a random vector, $\mathbf{q}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|_{2}}$
for $k=1,2, \ldots$ do

$$
\mathbf{v}=A \mathbf{q}_{\mathrm{k}}
$$

for $j=1,2, \ldots k$ do

$$
h_{j k}=\mathbf{q}_{\mathbf{j}}^{*} \mathbf{v}
$$

$$
\mathbf{v}=\mathbf{v}-h_{j k} \mathbf{q}_{\mathbf{j}}
$$

end for
$h_{k+1, k}=\|\mathbf{v}\|_{2}$
$\mathbf{q}_{\mathbf{k}+\mathbf{1}}=\mathbf{v} / h_{k+1, k}$
end for
Given this algorithm, $Q_{k}=\left[\mathbf{q}_{\mathbf{1}}, \mathbf{q}_{\mathbf{2}}, \ldots, \mathbf{q}_{\mathbf{k}}\right]$ is an orthonormal basis for $\mathcal{K}_{n}(A, b)$.
Note that $A Q_{k}=Q_{k+1} \hat{H}_{k}$ where \hat{H}_{k} is $\left[\begin{array}{c}H_{k} \\ h_{k+1, k} e_{k}^{T}\end{array}\right]$.
Thus we have $Q_{k}^{*} A Q_{k}=\left[\begin{array}{ccccc}1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & 0 & 1 & 0\end{array}\right] \cdot\left[\begin{array}{c}H_{k} \\ h_{k+1, k} e_{k}^{T}\end{array}\right]=\mathrm{H}_{k}$, where H_{k} is
tridiagonal and can be interpreted as the representation in the basis $\left\{\mathbf{q}_{\mathbf{1}}, \mathbf{q}_{\mathbf{2}}, \ldots, \mathbf{q}_{\mathbf{k}}\right\}$ of the orthogonal projection of A onto \mathcal{K}.

3 Lanczos Algorithm

Lanczos algorithm builds an orthonormal basis for Krylov subspace for hermitian matrix(that is, a complex square matrix that is equal to its own conjugate transpose). The following is Lanczos algorithm:

Lanczos Algorithm:
Given $A=A^{*}$, initialize \mathbf{b} as a random vector, $\beta_{0}=0, \mathbf{q}_{\mathbf{0}}=0, \mathbf{q}_{\mathbf{1}}=\frac{\mathbf{b}}{\|\mathbf{b}\|_{\mathbf{2}}}$ for $k=1,2, \ldots$ do
$\mathbf{v}=A \mathbf{q}_{\mathbf{k}}$
$\alpha_{k}=\mathbf{q}_{\mathbf{k}}{ }^{T} \mathbf{v}$
$\mathbf{v}=\mathbf{v}-\beta_{k+1} \mathbf{q}_{\mathbf{k}+\mathbf{1}}-\alpha_{k} \mathbf{q}_{\mathbf{k}}$
$\beta_{k}=\|\mathbf{v}\|_{2}$
$\mathbf{q}_{\mathbf{k}+\mathbf{1}}=\mathbf{v} / \beta_{k}$
end for
If we define $T_{k}=\left[\begin{array}{cccccc}\alpha_{1} & \beta_{1} & 0 & \ldots & \ldots & 0 \\ \beta_{1} & \alpha_{2} & \beta 2 & \ldots & \ldots & 0 \\ 0 & \beta_{2} & \alpha_{3} & \beta_{3} & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & \beta_{k-1} & \alpha_{k}\end{array}\right]$ Then we have $A Q_{k}=$ $Q_{k} \hat{T}_{k}$ where $\hat{T}_{k}=\left[\begin{array}{c}T_{k} \\ \beta_{k} e_{k}^{T}\end{array}\right]$
$\forall k, q_{k}$ is a three-term recurrence relation involving itself and previous Krylov vectors, which is computational efficient.

4 Solving the system in coordinate space

Having defined the basis for Krylov subspace, we want to solve $A x=b$ with $x^{(k)} \in \mathcal{K}_{k}(A, b)$ and 0 as our initial guess.

Thus $x^{(k)}$ should be the "best" vector in $\mathcal{K}_{k}(A, b)$ where "best" means $x^{(k)}=$ $\operatorname{argmin}_{x \in \mathcal{K}_{k}(A, b)}\|A x-b\|_{2}^{2}$. This can be done via MINRES[1] if $A=A^{*}$ or via GMRES[2] in more general cases.

What if we want to solve $x^{(k)}=\operatorname{argmin}_{x \in \mathcal{K}_{k}(A, b)}\left\|x-A^{-1} b\right\|_{2}^{2}=x^{T} x+$ $b^{T} A^{-T} A^{-1} b-x^{T} A^{-1} b-b^{T} A^{-T} x$? The problem is that A^{-1} cannot be eliminated.

5 Conjugate Gradient

Conjugate gradient is a kind of Krylov space solver that only applies to systems that are symmetric positive definite(spd).

The goal of conjugate gradient is to solve the problem $x^{(k)}=\operatorname{argmin}_{x \in \mathcal{K}_{k}(A, b)} \| x-$ $A^{-1} b \|_{A}^{2}$ where A is spd.

This can be written as $\operatorname{argmin}_{y \in \mathbb{R}^{k}}\left\|Q_{k} y-A^{-1} b\right\|_{A}^{2}=\operatorname{argmin}_{y \in \mathbb{R}^{k}} y^{T} Q_{k}^{T} A Q_{k} y+$ $b^{T} A^{-1} b-2 y^{T} Q_{k}^{T} b=\operatorname{argmin}_{y \in \mathbb{R}^{k}} y^{T} T_{k} y-2 y^{T} e_{1}\|b\|_{2}$

Take derivative and set it equal to zero, we will have $T_{k} y-\|b\|_{2} e_{1}=0$, that is, $T_{k} y=\|b\| e_{1}$.

In conclusion, when solving $A x=b$ using Krylov subspace method, we run Lanczos with A, b at each step to get Q_{k} and T_{k}. Then we solve $Q_{k} y^{(k)}=\|b\|_{2} e_{1}$ and set $x^{(k)}=Q_{k} y^{(k)}$.

References

[1] Christopher C Paige and Michael A Saunders. Solution of sparse indefinite systems of linear equations. SIAM journal on numerical analysis, 12(4):617629, 1975.
[2] Youcef Saad and Martin H Schultz. Conjugate gradient-like algorithms for solving nonsymmetric linear systems. Mathematics of Computation, 44(170):417-424, 1985.

