Krylov space methods are considered as one of the most important methods for solving eigenvalues/eigenvectors. Consider the following linear transformation,

$$
x \rightarrow \text { black box } \rightarrow A x
$$

We want to build an iterative method such that $x^{(k)} \rightarrow x$ with $A x=b$ as $k \rightarrow \infty$.
We decide to consider

$$
x^{(k)} \in \mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, \cdots, A^{k-1} b\right\}
$$

This has the following benefits:
(1) We can construct $\mathcal{K}_{k}(A, b)$ with just the black box,
(2) $\mathcal{K}_{k}(A, b) \subseteq \mathcal{K}_{k+1}(A, b)$,
(3) Denote $P_{k}(A)$ as a polynomial of A. Since any linear combination of $b, A b, \cdots$ is a a polynomial of A times b, we have $x^{(k)}=P_{k}(A) b$.

If we consider the following so-callled Krylov matrix

$$
K_{n}=\left[b, A b, \cdots, A^{n-1} b\right]
$$

This matrix is very ill conditioned. The reason is that by convergence of power method, $A^{n} b$ approaches a multiple of the dominant eigenvector of A as n gets large, making K_{n} almost singular. Therefore we need to work with an orthonormal basis.

Given $n \times n$ matrix A, we can compute an orthogonal matrix Q and an upper Hessenberg matrix H (upper triangular + one sub-diagonal) s.t.

$$
A=Q H Q^{*}
$$

Let $Q_{k}=\left[q_{1}, \cdots, q_{k}\right]$ be the first k columns of matrix Q. And let

$$
\tilde{H}_{k}=\left(\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 k} \\
h_{21} & h_{22} & \cdots & h_{2 k} \\
0 & h_{32} & \cdots & h_{3 k} \\
\vdots & & & \vdots \\
0 & \cdots & h_{k, k-1} & h_{k k} \\
0 & 0 & \cdots & h_{k+1, k}
\end{array}\right)
$$

be the upper $(k+1) \times k$ block of H. Then

$$
\begin{gathered}
A Q_{k}=Q_{k} \tilde{H}_{k} \\
A q_{k}=h_{1 k} q_{1}+\cdots+h_{k k} q_{k}+h_{k+1, k} q_{k+1}
\end{gathered}
$$

This gives us a $k+1$ term recurrance for q_{k+1}. We can show that the h 's correspond to modified Gran-Schnidt orthogonalization.

Arnoldi Algorithm

```
Algorithm 1 Arnoldi Algorithm
    procedure
        Given \(A, b\), let \(v_{1}=b /\|b\|_{2}\)
        for \(k=1,2, \cdots\) do
            \(q=A v_{k}\)
            for \(j=1, \cdots, k\) do
                \(h_{j k}=v_{j}^{*} q\)
                \(q=q-h_{j k} v_{j}\)
            \(h_{k+1, k}=\|q\|_{2}\)
            \(v_{k+1}=q / h_{k+1, k}\)
```

Then $V=\left[v_{1}, v_{2}, \cdots, v_{k}\right]$ is an orthonomal basis for $\mathcal{K}_{k}(A, b)$. And we have

$$
\begin{gathered}
A V_{k}=V_{k+1} \tilde{H}_{k} \\
\Rightarrow V_{k}^{*} A V_{k}=\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{\top}
\end{array}\right]=H_{k}
\end{gathered}
$$

This yields an alternative interpretation of the Arnoldi iteration as a (partial) orthogonal reduction of A to Hessenberg form. The matrix H_{k} can be viewed as the representation in the basis formed by the Arnoldi vectors of the orthogonal projection of A onto the Krylov subspace \mathcal{K}_{k}.

If A is Hermitian, then so is $V_{k}^{*} A V_{k}$. Thus H_{k} is tridiagonal and we get a three term recurrence which is a further reduction of A. This leads us to the Lanczos algorithm.

Lanczos Algorithm

```
Algorithm 2 Lanczos Algorithm
    procedure
        Given \(A=A^{*}, b, \beta_{0}, v_{0}=0\), let \(v_{1}=b /\|b\|_{2}\)
        for \(k=1,2, \cdots\) do
            \(q=A v_{k}\)
            \(\alpha_{k}=v_{k}^{\top} q\)
            \(q=q-\beta_{k+1} v_{k+1}-\alpha_{k} v_{k}\)
            \(\beta_{k}=\|q\|_{2}\)
            \(v_{k+1}=q / \beta_{k}\)
```

Define

$$
T_{k}=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & 0 \tag{1}\\
\beta_{1} & \ddots & \ddots & \\
& \ddots & \ddots & \beta_{k-1} \\
0 & & \beta_{k-1} & \alpha_{k}
\end{array}\right]
$$

Then

$$
A V_{k}=V_{k} \tilde{T}_{k}=V_{k}\left[\begin{array}{c}
T_{k} \\
\beta_{k} e_{k}^{\top}
\end{array}\right]
$$

While formally the three-term recurrence is exact and no orthogonality is lost, numerically its use results in V_{k} with columns that are not particularly orthogonal.

We want to solve $A x=b$ with $x^{(k)} \in \mathcal{K}_{k}(A, b)$ with 0 as our initial guess. $x^{(k)}$ should be the "best" vector in $\mathcal{K}_{k}(A, b)$. We define "best" interms of:

$$
\begin{equation*}
x^{(k)}=\underset{x \in \mathcal{K}_{k}(A, b)}{\arg \min }\|A x-b\|_{2}^{2} \tag{2}
\end{equation*}
$$

Can do this if $A=A^{*} \Rightarrow M I N R E S$. Generally $A \Rightarrow G M R E S$.
What if we define

$$
\begin{align*}
x^{(k)} & =\underset{x \in \mathcal{K}_{k}(A, b)}{\arg \min }\left\|x-A^{-1} b\right\|_{2}^{2} \\
& =x^{\top} x+b^{\top}\left(A^{-1}\right)^{\top} A^{-1} B-x^{\top} A^{-1} b-b^{\top}\left(A^{-1}\right)^{\top} x \tag{3}
\end{align*}
$$

cannot eliminate $\left(A^{-1}\right)^{\top}$.

Conjugate gradient (CG)

$$
\begin{equation*}
x^{(k)}=\underset{x \in \mathcal{K}_{k}(A, b)}{\arg \min }\left\|x-A^{-1} b\right\|_{A}^{2} \tag{4}
\end{equation*}
$$

if $A \succ 0$.
We want to solve $\min _{x \in \mathcal{K}_{k}}\left\|x-A^{-1} b\right\|_{A}^{2}$. Assume that A is symmetric and that $A \succ 0$. We can write this as

$$
\begin{align*}
\min _{y \in \mathbb{R}^{k}}\left\|V_{k} y-A^{-1} b\right\|_{A}^{2} & =\min _{y \in \mathbb{R}^{k}}\left(V_{k} y-A^{-1} b\right)^{\top} A\left(V_{k} y-A^{-1} b\right) \\
& =\min _{y \in \mathbb{R}^{k}} y^{\top} V_{k}^{\top} A V_{k} y+b^{\top} A^{-1} b-2 y^{\top} V_{k}^{\top} b \\
& =\min _{y \in \mathbb{R}^{k}} y^{\top} T_{k} y-2 y^{\top} e_{1}\|b\| \tag{5}
\end{align*}
$$

Take derivatie with respect to y set it to zero, we get

$$
\begin{gather*}
T_{k} y-\|b\| e_{1}=0 \tag{6}\\
\Rightarrow T_{k} y=\|b\| e_{1} \tag{7}
\end{gather*}
$$

CG conceptually:

- Run Lanczos with A, b at each step k to obtain V_{k}, T_{k}
- Solve $T_{k} y^{(k)}=\|b\|_{2} e_{1}$
- Then $x^{(k)}$ solves $\min _{x \in \mathcal{K}_{k}}\left\|x-A^{-1} b\right\|_{A}^{2}$.

The algorithm is efficient. See G.V.L II 3.5 4th edition [1] and Trefethen and Bau III [2] for further references on Lanczos/Arnoldi algorithm.

References

[1] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.
[2] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam, 1997.

