CS 6220 (Fall 2017) Data-Sparse Matrix Computations Lecture: Sep 14th

Krylov Methods

Lecturer: Anil Damle Scribe: Shuang Tao

Krylov space methods are considered as one of the most important methods for solving eigenvalues/eigenvectors.
Consider the following linear transformation,

+ — [k b - v

We want to build an iterative method such that z(*) — z with Az = b as k — oc.

We decide to consider
z*) e K1 (A,b) = span{b, Ab, - -- , A*"1p}

This has the following benefits:
(1) We can construct K (A, b) with just the black box,
(2) K:IC(A? b) g K:k+1(A7 b)a
(3) Denote Py(A) as a polynomial of A. Since any linear combination of b, Ab,--- is a a polynomial of A
times b, we have z(¥) = P (A)b.
If we consider the following so-callled Krylov matrix
K, = [b,Ab,--- , A" D]

This matrix is very ill conditioned. The reason is that by convergence of power method, A™b approaches a
multiple of the dominant eigenvector of A as n gets large, making K,, almost singular. Therefore we need
to work with an orthonormal basis.

Given n X n matrix A, we can compute an orthogonal matrix ¢ and an upper Hessenberg matrix H (upper
triangular + one sub-diagonal) s.t.

A=QHQ"
Let Qr = [q1, - - , qx] be the first k columns of matrix Q. And let
hi1  hig T hag
ha1  haa - hag,
_ 0 hsz - hsk
H,=1| . .
0 - hrr—1 Pk
0 0 e Ptk
be the upper (k + 1) x k block of H. Then
AQy, = QrHy,

Agy = higqn + -+ + hik Qi + Pi1 £ Qi1

This gives us a k+1 term recurrance for qx41. We can show that the h’s correspond to modified Gran-Schnidt
orthogonalization.



2 Krylov Methods

Arnoldi Algorithm

Algorithm 1 Arnoldi Algorithm

1: procedure

2 Given A, b, let v; = b/||b||2
3 for k=1,2,--- do

4 q = Avg

5: for j=1,--- ,kdo

6 hji = viq

7 q=q— hj,v;

8 hrs1k = llgll2

9 Vg1 = Q/hk+1,k

Then V = [v1,v9, - ,vg] is an orthonomal basis for K (A4,b). And we have
AVy = Vi Hy
Hy,
= ViAV, =11 0 =H
gAVi=[1 0] [hkﬂ,keﬂ ’

This yields an alternative interpretation of the Arnoldi iteration as a (partial) orthogonal reduction of A to
Hessenberg form. The matrix Hj, can be viewed as the representation in the basis formed by the Arnoldi
vectors of the orthogonal projection of A onto the Krylov subspace k.

If A is Hermitian, then so is V; AV). Thus Hj, is tridiagonal and we get a three term recurrence which is a
further reduction of A. This leads us to the Lanczos algorithm.

Lanczos Algorithm

Algorithm 2 Lanczos Algorithm

1: procedure

2 Given A = A*, b, ﬂo, vg =0, let v; = b/”bHQ
3 for k=1,2,--- do

4 q = Av

5: ar = q

6 q=q— Br+1Vk+1 — QVk

7 Br = llqll2

8 V1 = q/ B

Define
ay B 0
To= | (1)
o Brer
0 Br—1 g
Then

~ T,
AV = VT, = Vy, [ﬁk:'l']
k
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While formally the three-term recurrence is exact and no orthogonality is lost, numerically its use results in
Vi with columns that are not particularly orthogonal.

We want to solve Az = b with 2*) € ICy (A, b) with 0 as our initial guess. z(*) should be the ”best” vector
in K (A,b). We define "best” interms of:

+®) = argmin ||Az — |2 (2)
€Kk (A,b)

Can do this if A = A* = MINRES. Generally A = GMRES.
What if we define

+® = argmin |z — A71b|2
€K, (A,D)
= 2’24+ " (AHTAT' BT AT - bT (AT (3)
cannot eliminate (A~1)T.

Conjugate gradient (CG)
+®) = argmin ||z — A7')% (4)
€K, (A,b)

if A= 0.

We want to solve mingex, ||z — A7'b||%. Assume that A is symmetric and that A = 0. We can write this as

min ||Vey — A710)|4 = min(Viy — A7) TA(Vey — A7 1D)
yERF yERF
= miny V,AViy +bTA -2y Vb
yERK
= miny' Ty — 2y el|o| (5)
yeRF

Take derivatie with respect to y set it to zero, we get
Ty — [lbllex =0 (6)
= Ty = [[bllex (7)

CG conceptually:

e Run Lanczos with A, b at each step k to obtain Vj, T}
e Solve Typy™®) = ||b||2e1

e Then z(*) solves min,cx, || — A710||%.

The algorithm is efficient. See G.V.L II 3.5 4th edition [1] and Trefethen and Bau III [2] for further references
on Lanczos/Arnoldi algorithm.
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