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Krylov space methods are considered as one of the most important methods for solving eigenvalues/eigenvectors.
Consider the following linear transformation,

x→ black box → Ax

We want to build an iterative method such that x(k) → x with Ax = b as k →∞.

We decide to consider
x(k) ∈ Kk(A, b) = span{b, Ab, · · · , Ak−1b}

This has the following benefits:

(1) We can construct Kk(A, b) with just the black box,

(2) Kk(A, b) ⊆ Kk+1(A, b),

(3) Denote Pk(A) as a polynomial of A. Since any linear combination of b, Ab,· · · is a a polynomial of A
times b, we have x(k) = Pk(A)b.

If we consider the following so-callled Krylov matrix

Kn =
[
b, Ab, · · · , An−1b

]
This matrix is very ill conditioned. The reason is that by convergence of power method, Anb approaches a
multiple of the dominant eigenvector of A as n gets large, making Kn almost singular. Therefore we need
to work with an orthonormal basis.

Given n× n matrix A, we can compute an orthogonal matrix Q and an upper Hessenberg matrix H (upper
triangular + one sub-diagonal) s.t.

A = QHQ∗

Let Qk = [q1, · · · , qk] be the first k columns of matrix Q. And let

H̃k =



h11 h12 · · · h1k
h21 h22 · · · h2k
0 h32 · · · h3k
...

...
0 · · · hk,k−1 hkk
0 0 · · · hk+1,k


be the upper (k + 1)× k block of H. Then

AQk = QkH̃k

Aqk = h1kq1 + · · ·+ hkkqk + hk+1,kqk+1

This gives us a k+1 term recurrance for qk+1. We can show that the h’s correspond to modified Gran-Schnidt
orthogonalization.
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2 Krylov Methods

Arnoldi Algorithm

Algorithm 1 Arnoldi Algorithm

1: procedure
2: Given A, b, let v1 = b/‖b‖2
3: for k = 1, 2, · · · do
4: q = Avk
5: for j = 1, · · · , k do
6: hjk = v∗j q
7: q = q − hjkvj
8: hk+1,k = ‖q‖2
9: vk+1 = q/hk+1,k

Then V = [v1, v2, · · · , vk] is an orthonomal basis for Kk(A, b). And we have

AVk = Vk+1H̃k

⇒ V ∗k AVk =
[
I 0

] [ Hk

hk+1,ke
>
k

]
= Hk

This yields an alternative interpretation of the Arnoldi iteration as a (partial) orthogonal reduction of A to
Hessenberg form. The matrix Hk can be viewed as the representation in the basis formed by the Arnoldi
vectors of the orthogonal projection of A onto the Krylov subspace Kk.

If A is Hermitian, then so is V ∗k AVk. Thus Hk is tridiagonal and we get a three term recurrence which is a
further reduction of A. This leads us to the Lanczos algorithm.

Lanczos Algorithm

Algorithm 2 Lanczos Algorithm

1: procedure
2: Given A = A∗, b, β0, v0 = 0, let v1 = b/‖b‖2
3: for k = 1, 2, · · · do
4: q = Avk
5: αk = v>k q
6: q = q − βk+1vk+1 − αkvk
7: βk = ‖q‖2
8: vk+1 = q/βk

Define

Tk =


α1 β1 0

β1
. . .

. . .

. . .
. . . βk−1

0 βk−1 αk

 (1)

Then

AVk = VkT̃k = Vk

[
Tk
βke
>
k

]
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While formally the three-term recurrence is exact and no orthogonality is lost, numerically its use results in
Vk with columns that are not particularly orthogonal.

We want to solve Ax = b with x(k) ∈ Kk(A, b) with 0 as our initial guess. x(k) should be the ”best” vector
in Kk(A, b). We define ”best” interms of:

x(k) = arg min
x∈Kk(A,b)

‖Ax− b‖22 (2)

Can do this if A = A∗ ⇒MINRES. Generally A⇒ GMRES.

What if we define

x(k) = arg min
x∈Kk(A,b)

‖x−A−1b‖22

= x>x+ b>(A−1)>A−1B − x>A−1b− b>(A−1)>x (3)

cannot eliminate (A−1)>.

Conjugate gradient (CG)
x(k) = arg min

x∈Kk(A,b)

‖x−A−1b‖2A (4)

if A � 0.

We want to solve minx∈Kk
‖x−A−1b‖2A. Assume that A is symmetric and that A � 0. We can write this as

min
y∈Rk

‖Vky −A−1b‖2A = min
y∈Rk

(Vky −A−1b)>A(Vky −A−1b)

= min
y∈Rk

y>V >k AVky + b>A−1b− 2y>V >k b

= min
y∈Rk

y>Tky − 2y>e1‖b‖ (5)

Take derivatie with respect to y set it to zero, we get

Tky − ‖b‖e1 = 0 (6)

⇒ Tky = ‖b‖e1 (7)

CG conceptually:

• Run Lanczos with A, b at each step k to obtain Vk, Tk

• Solve Tky
(k) = ‖b‖2e1

• Then x(k) solves minx∈Kk
‖x−A−1b‖2A.

The algorithm is efficient. See G.V.L II 3.5 4th edition [1] and Trefethen and Bau III [2] for further references
on Lanczos/Arnoldi algorithm.
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