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1 Rank Structred Matrices

1.1 Recap

Last time, we showed the first step of how to factorized a matrix with entries representing some physical
quantity on a plane into a block diagonal form.

More specifically, suppose we have a set of points {xi ∈ R2}i=1,...,n ⊂ Ω and a matrix K with (i, j)th
entry to be

Kij = K(xi, xj).

for some function K : R2 × R2 → R which is symmetric, i.e., K(x, y) = K(y, x) and can be approximated
well using Taylor expansion. The points {xi ∈ R2}i=1,...,n are assumed to live uniformly in the domain. We
first divide the region Ω into three parts. Like shown in the following graph.

Here B is the set points that we are currently interested in. N are neighbor points and F are points in
the far field. We will also use B,N, F to refer to the indices of the corresponding points. Then there is a
permutation matrix P such that

P ∗KP =

KBB KBN KBF

KNB KNN KNF

KFB KFN KFF .


By previous lectures, we know KFB is approximately low rank and we can use interpolative decomposition

on this matrix to obtain
KFBΠ ≈ KFS [IT ]

for some S ⊂ B which is called skeleton, some permutation matrix Π and some matrix T . We denote
R = B − S to be the set of redundant points.

Then we can show that there are upper triangular matrices UT , U and lower triangular matrices L,LT
and permutation matrix P such that

LUTP
∗KPLTU ≈


XRR

XSS XSN XSF

XNS XNN KNF

KFS KFN KFF

 =: Z(K,B).
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The accuracy of approximation is at the level of accuracy using ID.

1.2 A Recursive Skeletonization Factorization

We define
VB = PU−1

T L−1

and
WB = U−1L−1

T P ∗.

Then
Z(K,B) = V −1

B KW−1
B .

In the following we will have V,W with other subscripts to mean similar operations performing on the set
indicated in the subscripts.

We now start describing the procedure of factorizing K into a block diagonal form where each block will
be of small size, e.g., 64× 64 or 128× 128.

Assume we have a quad-tree on Ω with levels 0 → L. The levels is determined so no leaf level box has
more than some fixed number of points.

1. We will first specify what we should do on the leaf level.

(a) Take a leaf box, say Ωl with index Il. Use the procedure in recap or last lecture to compute
Z(K, Il). Let Nl be neighbor points that touches Ωl and Fl as everything else.

(b) Select the next leaf box Il′ , where Il′ is some other box at the leaf level. Define Nl′ as ”active
points” in neighbor boxes and Fl′ as ”active” points in far field. A point is active if it has never
been redundant. If we go back to last lecture or recap, the skeleton set S is still active while R is
redundant.

It should be noted that Z(K, Il)Fl′ ,Il′ might not be just K(Fl′ , Il′). This happens if Il′ ⊂ Nl
and Fl′ ∩ Nl 6= ∅, a.k.a that Il′ is in the near field. Thus we don’t have much reason to say
Z(K, Il)Fl′ ,Il′ is low rank. But it turns out to be fine.

What we get after step 2 is

V −1
l′ Z(K, Il)W

−1
l′ ≈ Z(Z(K; Il); Il′) := Z(K, Il, Il′)

The matrix Z(K, Il, Il′) looks like

Z(K, Il, Il′) =

XRlRl

XRl′Rl′

X

 .
Here Rl, Rl′ are ”inactive” and redundant. With quad trees these boxes are disjoint as well.

2. We now define how to proceed to go up the tree.

(a) We loop over all boxes at leaf level according to previous steps. Let’s say we have Z(K, I1, . . . , Im)
where m are boxed on the leaf level. After this procedure. We get a block diagonal matrix with

Z(K, I1, . . . , Im) =


XRlRl

XR2R2

. . .

X

 .
There is one large matrix X left after we have done the leaf level and is what we need to deal
with at a higher level of the hierarchical tree.

(b) We take all boxes at level L− 1. Say Ωp define

IΩp = ∪σ s.t. Ωσ is a children of ΩpSσ
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(c) We can then do the same procedure as the leaf level.

3. We then loop over all levels L,L− 1, . . . , 1. Note that for skeleton sets at a certain level which are not
neighbors or neighbor of a common box, then the entries with indeces cross the boxes are always the
corresponding entries in K. For example, suppose at level level we have B1, B2 and skeleton set S1, S2,
as long as B1 and B2 are not neighbors or not both are neighbors of a third box B3, then the entries
after we multiply V and W s are still KS1S2 . See [2, Figure 5] for more detail explanation on this.

Define an order of boxes such that if l ≤ l′, l is on the same or lower level of the tree. Let M be the total
boxes not including the root.Then we get

D =


XR1R1

. . .

XRMRM

XI0I0

 ≈ P ∗(Πl=[M ]′V
−1
i )K(Πl∈[M ]W

−1
i )P

and so
F = (Πl=[M ]Vi)PKP

∗(Πl∈[M ]′Wi) ≈ K.

The multiplication Π[M ]Vi means multiply according to order V1 . . . VM and Π[M ]′V
−1
i means the reverse

order V −1
M . . . V −1

1 . The number M is at the order O(N).
The final matrix F can be called the skeletonization factorization of K. It is ”easy” to factor/solve

systems and F−1 = K−1 and F−1 ≈ K−1 since each submatrices should be easy to factorize or solve and
there are O(N) of them.

Finally, if |Sl| = O((L − l + 1)q where l is the levels of boxes and |Sl| = O(logq(N)) at level L − 2.
Then the algorithm is O(N) for factorizing, solve and applies the matrix to a vector. See [2, Theorem 3.3,
Corollary 3.4] for more detail explanation on this.

2 Krylov Subspace Methods

2.1 Introduction

Alexei Krylov, was a Russian mathematician among many other things. After serving in the Russian
Navy, Krylov began his work as an applied mathematician. His work spanned a wide variety of fields
from maritime engineering, differential equations, physics, and most importantly numerical analysis. In
1931, Krylov published a paper on what we call a ”Krylov Subspace”[1]. The paper dealt with eigenvalue
problems and the computation of the characteristic polynomial coefficiants of a matrix. Limited in his time
due to the lack of computation power, Krylov’s work lay unnoticed until it became valuable for modern
iterative methods for finding eigenvalues, or solving linear systems. Today many Krylov Subspace methods
exist, including GMRES, Arnoldi, Lanczos, and BiCGSTAB.

2.2 The Problem

Assume we have the following.

1. A black box such that inputting a vector x we are given back Ax

We have no idea what A is, only that some process inside this black box computes Ax and returns it to us.
Given this, the problem at hand is, can we solve Ax = b for a vector b? Additionally are we able to find
eigenvalues/eigenvectors of A? Using Krylov subspace methods, the answer to these two questions is Yes.

2.3 Iterative methods

Given A,b to solve Ax = b we can cook up a sequence of xk → X as k →∞. The method by which we do this
is iterative, as opposed to a direct method. The difference between the two can be seen in the picture below.
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The convergence for direct methods is non-existant up until a certain point at which the method converges
to machine epsilon precision denoted O(ε). Iterative methods on the other hand converge, but at a much
slower rate. The shape of the line of convergence is dependent on the problem at hand.

2.4 The Solution

The solution to this problem is to use Krylov Subspaces. We can look for the solution xk which lies in the
kth krylov subspace, denoted xk ∈ Kk(A, b) ≡ span{b, Ab,A2b, . . . , Ak−1b}. More details will be covered in
the writeup of the next lecture.
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