
Rank Structured Matrices: Key Tools

Scribes: Marc Aurele Gilles, David Eriksson, Mateo Dı́az

September 28, 2017

1 Introduction

In the last lecture we covered the Fast Multipole Method (FMM). This lecture will cover a general-
ization called rank structured matrices. Recall that FMM is valid in the following setting:

• We have a collection of points {xi}ni=1 on a bounded domain Ω ⊂ Rm.

• We are given a kernel function K : Rm × Rm → R.

Last time we considered the kernel K(x, y) = log |x− y|. Using the collection of points {xi}ni=1 and
the kernel K(x, y), we defined [K]i,j = K(xi, xj). We showed that FMM allows us to compute the
vector product Kq in O(n), rather than O(n2). However, the FMM method has several limitations:

1. It only allows us to compute matrix-vector multiplication, not to solve linear system i.e., it
does not help to find q such that Kq = f .

2. It requires a lot of analytical work for each different kernel. Indeed, we need to analytically
compute a multipole expansion for a specific kernel K(x, y) to make FMM work.

We will resolve both these issues using rank structured matrix computations. Before we describe
these methods we will introduce some notation.

1.1 Notation

We will consider two disjoints subsets Ω1,Ω2 ⊂ Ω and associated sets of indices I1 = {i | xi ∈ Ω1}
and I2 = {i | xi ∈ Ω2}.

1. We denote the sub-block of K which corresponds the interaction between the targets in Ω1 and
the sources in Ω2 by K(I1, I2) ∈ Rm1×m2 where m1 = |I1|, m2 = |I2|. Typically, m1 � m2.

2. We say that some matrix A is compressible if A ≈ UV T for some U ∈ Rm1×k, V ∈ Rm2×k

with k � m1. In other words, A is low rank or approximately low rank.

Note that since the sets are disjoints, K(I1, I2) represents an off-diagonal block of K.

1

1.2 Admissibility

There are two large classes of rank structured algorithms based on the assumptions on the matrix
K. Consider two subsets Ω1,Ω2.

1. Weak admissibility: K is weakly admissibility if K(I1, I
c
1) is compressible.

2. Strong admissibility: K is strongly admissibility if the distance between the two sets Ω1

and Ω2 being greater than some distance D implies that the off-diagonal block K(I1, I2) is
compressible (i.e. low-rank), see Figure 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

770 V. MINDEN, K. L. HO, A. DAMLE, AND L. YING

D0 � D
D

D D

D

Fig. 1. Given two boxes in R2 each with sidelength D and with corresponding DOF sets B1

and B2, in the strong admissibility setting the associated o↵-diagonal blocks KB1B2
and KB2B1

are
assumed to be numerically low rank as long as the boxes are separated by a distance of at least D.
In contrast, in the weak admissibility setting the boxes need only be nonoverlapping.

boxes, let B1 and B2 be sets of DOFs corresponding to distinct boxes at the same
level of the tree each with sidelength D. For strongly admissible hierarchical matri-
ces, the o↵-diagonal block KB1B2

is compressed only if B1 and B2 are well-separated
as in the FMM—that is, if B1 and B2 are separated by a distance of at least D as
in Figure 1. In contrast, weakly admissible hierarchical matrices compress not only
well-separated interactions but also interactions corresponding to DOFs in adjacent
boxes. The inclusion of nearby interactions under weak admissibility typically in-
creases the required approximation rank, but it also a↵ords a much simpler geometric
and algorithmic structure.

A number of more recent methods have been developed for hierarchically rank-
structured matrices with the aim of more e�cient practical performance based on
weakly admissible rank structure. Examples include algorithms for hierarchical semi-
separable matrices [4, 5, 32], hierarchical o↵-diagonal low-rank matrices [1, 24], and
methods based on recursive skeletonization (RS) [25, 12, 21], among other related
schemes [3, 6]. In general, methods based strictly on weak admissibility require al-
lowing ranks of o↵-diagonal blocks to grow nonnegligibly with N to attain a fixed
target accuracy. This has led to the development of more involved methods such as
the hierarchical interpolative factorization (HIF) of Ho and Ying [22] and the method
of Corona, Martinsson, and Zorin [8], which combine RS with additional compression
steps based on geometric considerations to obtain greater e�ciency at the cost of a
more complicated algorithm.

There has been much less work on improved algorithms for solving (2) based
directly on strong admissibility. The stand-out example is the recent “inverse fast
multipole method” (IFMM) of Coulier, Pouransari, and Darve [9] and Ambikasaran
and Darve [2], which assumes a general H2-matrix is given and provides a framework
for approximately applying the inverse operator in the language of the FMM. Further,
a factorization based on block elimination and strong admissibility has been recently
introduced by Sushnikova and Oseledets [31] for the “sparse analogue” of our integral
equation setting (that is, discretizations of elliptic partial di↵erential equations).

1.2. Contributions. Based on the RS process of Martinsson and Rokhlin [25]
in the block elimination form of Ho and Ying [22, section 3], we introduce strong
skeletonization, an extension of skeletonization for the strong admissibility setting.
Using this in a recursive fashion like the original RS factorization, we develop the
strong recursive skeletonization factorization (RS-S), an approximate factorization
of K into the product of many block unit-triangular matrices and a block-diagonal
matrix with time complexity linear in the number of DOFs, under suitable rank-
scaling assumptions. Using low-accuracy approximations to o↵-diagonal blocks yields

D
ow

nl
oa

de
d

09
/0

8/
17

 to
 1

28
.8

4.
12

5.
64

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Figure 1: Two boxes in R2 with side length D are assumed to be numerically low rank if the distance
between them is at least D, while weak admissibility only requires them to be non-overlapping [4]

Note that strong admissibility is actually a weaker condition than weak admissibility. Strong
admissibility can also be stated as: all points outside of distance D away from the Ω1 have “low
rank interaction” with Ω1. FMM is a special case of strong admissibility: we can use a multipole
expansion only when sources and targets are far away, but compute all individual interactions for
neighbors. There are tradeoffs between those two classes in accuracy, speed and assumptions you
have to make. The two main features of rank structured matrix computations are:

1. It provides us with a way to apply approximate inverses, i.e., it allows us to compute Bf where
B ≈ K−1.

2. It replaces the analytical work by a numerical approximation using the fact that some blocks
are low rank with good accuracy.

This type of algorithm can only be applied efficiently when there are low-rank blocks.
Next we are going to describe two linear algebra tools: a block diagonal factorization and inter-

polative decomposition, which we will combine to form the essential building block of rank structured
computation: skeletonization. The algorithms we will describe are called “skeletonization based al-
gorithms”, and were introduces by Martinssen and Rokhlin in [3]. In particular, we are looking at
making a multiplicative factorization which goes back to Greengard and Ho [2].

2

2 A block diagonal factorization

The first piece in performing skeletonization is block elimination. Assume that the matrix A ∈
RN×N , and consider a partition of the indices given by [n] = I ∪ J ∪R such that

A =

AII AIJ 0
AIJ AJJ AJR

0 ARJ ARR

 .
Suppose we want to solve a linear system with this matrix. We could try to use LU, or Cholesky. We
can handle the blocks separately if we can reduce the matrix to block diagonal form. Note that if we
assume AII is non-singular (which is typically the case in applications), we can define the matrices:

L =

 I
AJIA

−1
II I

I

 U =

I A−1
II AIJ

I
I

 ,
where the empty slots are zero entries. With this notation in hand, note that

Â := LAU =

AII

SJJ AJR

ARJ ARR

 .
The matrices L and U have explicit inverses that are very easy to compute given L, U :

L−1 =

 I
−AJIA

−1
II I

I

 U−1 =

I −A−1
II AIJ

I
I

 .
That is, L and U differ from their inverses only by a negative sign in the (1, 2) and (2, 1) blocks
respectively. Furthermore, the matrix Â is block diagonal. This implies that we only need to factor
the blocks separately which is computationally cheaper than working with the full matrix. Thus we
have a factorization which is cheap to invert:

A = L−1ÂU−1.

This gives us a tool to transform a matrix where all indices “talk” to each other, from one where
only blocks talk to each other. If the large blocks of the matrix A have the same structure has A
then we can recurse this algorithm and break down our blocks further into smaller blocks. The next
section will show how to handle the case where the corner blocks AIR are non-zeros.

3 Interpolative Decomposition

3.1 Definition

Suppose we want to compute a low rank representation of a block of the matrix. We can use an SVD,
which provides the optimal rank r representation of a matrix, but the SVD is expensive to compute.
In order to get computationally cheaper algorithms, we need to define a “goodness” measure of a
low rank approximation of a function. Given |I| × |J | matrix AIJ , and a tolerance ε, an ε-accurate
interpolative decomposition (ID) of AIJ is a partition of the points in J into two sets:

3

1. skeleton points S

2. redundant points R

with S ⊂ J , R = J/S, and matrix T such that:

‖AIR −AIST‖2 ≤ ε‖AIJ‖2. (1)

In other words, it allows us to write the redundant columns of A (AIR) as a linear combination
of the skeleton columns of A (AIS) up to some accuracy. The matrix T gives us the interpolation
coefficients. Written this way, S = I. is a trivial solution for any accuracy, so we want |S| to be as
small as possible. Another way to state this is:

AIJΠ ≈ AIS

[
I T

]
,

where the matrix AIS is tall and skinny, and Π is a permutation of the columns. In other words, we
represent the columns of AIJ by a subset AIS .

As stated earlier, the k truncated SVD of A provides the optimal rank k approximation of A.
This does not provide the same guarantee, but there is no asymptotic difference. For example, if
the the SVD would provide us with an ε-approximation of rank k, then this may provide us with
an ε-approximation of rank k + 5. The next section will show that this can be computed at a lower
computational cost.

3.2 Computation

To compute the (ID), we use the QR pivoted column factorization. Recall that

A = QR

where Q is unitary and R upper triangular if a QR factorization of A. Now assume |I| > |J |. A
pivoted QR factorization is defined by three matrices Q,R,Π such that

AΠ = Q

[
R11 R12

0 R22

]
where Π is a permutation of the columns. We are going to choose Π such that R11 is as well
conditioned as possible. Finding the optimal Π is NP-hard, but there are heuristics that work well
[1].

Consider the factorization where we have split the columns Q =
[
Q1 Q2

]
AΠ =

[
Q1 Q2

] [R11 R12

0 R22

]
=
[
Q1R11 Q1R12 +Q2R22

]
.

Let us get back to the matrices with indices I, J, S,R with J = S∪R, S∩R = ∅. We are seeking
an ID of AIJ . We can set AIS = Q1R11. Note that

AIJΠ =
[
AIS Q1R12 +Q2R22

]
=
[
AIS Q1R11R

−1
11 R12 +Q2R22

]
=
[
AIS AISR

−1
11 R12 +Q2R22

]
We can let T = R−1

11 R12, and if ‖R22‖ = ‖QR22‖ < ε, we may ignore it. Now note that up that
this gives us, up to permutations, a partition of the matrix AIJΠ =

[
AIS AIR

]
such that

AIJΠ =
[
AIS AIR

]
=
[
AIS AIST +Q2R22

]
.

4

Thus
‖AIR −AIST‖ = ‖R22‖ < ε,

which up to a constant is the definition of ID in (1).
Note that the condition that ‖QR22‖ ≈ 0 is approximately equivalent to saying that AIJ is

compressible, which is the strong admissibility assumption. In practice, we don’t want to compute
the full QR, but we can a this trick so that at some point we are confident that we have a good ID
and ignore the rest of the computation. These factorizations have high-performance implementations
in e.g., Python, LAPACK, and MATLAB. Next, we put block diagonalization and ID together to
perform skeletonization.

4 Skeletonization

Assume we have a large domain Ω and a small box B in the corner of Ω. We denote the neighbors
of B by N , and the points far away from B by F . This is illustrated in Figure 2.

Figure 2: The near-field N are the blue boxes and the far-field F are the red boxes [4]

The idea is to use what interpolative decomposition to transform the matrix K into a matrix
with zero blocks on the bottom left and top right corner. Once the matrix has this structure we
can use the block diagonalization factorization that we covered in §2 to turn it into a block diagonal
matrix with a small block and a giant block.

We will assume strong admissibility, i.e. the interactions between B and N are not low rank, but
the interactions between B and F are. Up to some permutation P we can write the kernel matrix
K in the following way:

P ∗KP =

KBB KBN KBF

KNB KNN KNF

KFB KFN KFF

 ,
where we have assumed that |B| < |N | � |F |, and that KFN is compressible. Assuming that K is
symmetric we compute an ε-accurate ID of KFB matrix with B = S ∪R

KFB =
[
KFR KFS

]
≈ KFS

[
T I

]
,

where we have assumed without loss of generality that B =
[
R S

]
. This forms a partition of the

points in the box B into two sets, the set of redundant points F , and the set of skeletons points S.
Physically, the skeleton points are typically the points close to the boundary of the box, and the

5

points R are the points in the interior of the box. However, it is difficult to prove any such statement
rigorously.

Using our ID, we can write

P ∗KP =


KRR KSR KRN KRF

KSR KSS KSN KRN

KNR KNS KNN KNF

KFR KFS KFN KFF

 ≈

KRR KSR KRN TKFS

KSR KSS KSN KRN

KNR KNS KNN KNF

TKFS KFS KFN KFF

 .
If we define

UT =


I −T ∗

I
I

I

 LT =


I
−T I

I
I


we have that

UTP
∗KPLT ≈


XRR XRS XRN 0
XSR XSS XSN KSF

XNR XNS KNN KNf

0 KFS KFN KFF

 ,
where X denotes blocks of the matrix that have been updated. Once again, LT and UT are very
easy to invert: we only need to flip the sign in the (2, 1) and (1, 2) block respectively. We now have a
matrix with zero blocks in the bottom left and top right corner and can use the block diagonalization
algorithm described in §2. That is, using XRR as the “pivot” we can define matrices L and U such
that

LUTP
∗KPLPTU ≈


X̂RR 0 0 0

0 X̂SS X̂SN KSF

0 X̂NS X̂NN KNF

0 KFS KFN KFF

 ,
where X̂ denote blocks that have changed. All the matrices L,U,LTUT are cheap to apply and
invert. We can use a factorization of the XRR block. Factoring the large block is easier than
factoring the original matrix. This factorization is called the skeletonized matrix K with respect to
the block B, and is denoted Z(K;B).

Z(K,B) := LUTP
∗KPLPTU ≈


X̂RR 0 0 0

0 X̂SS X̂SN KSF

0 X̂NS X̂NN KNF

0 KFS KFN KFF


In the next lecture, we will show how to use this decomposition recursively to build a fast

algorithm to apply and invert large matrices.

References

[1] Gene Howard Golub et al. Milestones in matrix computation: the selected works of Gene H.
Golub with commentaries. Oxford University Press, 2007.

[2] Kenneth L Ho and Leslie Greengard. “A fast direct solver for structured linear systems by re-
cursive skeletonization”. In: SIAM Journal on Scientific Computing 34.5 (2012), A2507–A2532.

6

[3] Per-Gunnar Martinsson and Vladimir Rokhlin. “A fast direct solver for boundary integral equa-
tions in two dimensions”. In: Journal of Computational Physics 205.1 (2005), pp. 1–23.

[4] Victor Minden et al. “A recursive skeletonization factorization based on strong admissibility”.
In: SIAM Journal of Multiscale Modeling and Simulation (2017).

7

