Rank Structured Matrices: Key Tools

Scribes: Marc Aurele Gilles, David Eriksson, Mateo Diaz

September 28, 2017

1 Introduction

In the last lecture we covered the Fast Multipole Method (FMM). This lecture will cover a general-
ization called rank structured matrices. Recall that FMM is valid in the following setting:

e We have a collection of points {z;}!; on a bounded domain Q C R™.
e We are given a kernel function K : R™ x R™ — R.

Last time we considered the kernel K (x,y) = log |z — y|. Using the collection of points {z;}, and
the kernel K (z,y), we defined [K|; ; = K(z;,2;). We showed that FMM allows us to compute the
vector product Kq in O(n), rather than O(n?). However, the FMM method has several limitations:

1. It only allows us to compute matrix-vector multiplication, not to solve linear system i.e., it
does not help to find ¢ such that Kq = f.

2. It requires a lot of analytical work for each different kernel. Indeed, we need to analytically
compute a multipole expansion for a specific kernel K (z,y) to make FMM work.

We will resolve both these issues using rank structured matrix computations. Before we describe
these methods we will introduce some notation.
1.1 Notation

We will consider two disjoints subsets Qq, Qs C Q and associated sets of indices I} = {i | z; € Q1 }
and Iy = {i | z; € Qa2}.

1. We denote the sub-block of K which corresponds the interaction between the targets in 2; and
the sources in Q by K (I, I5) € R™*™2 where my = |I1|, my = |I2]. Typically, m; < mo.

2. We say that some matrix A is compressible if A ~ UVT for some U € R™*k | ¢ Rm2*k
with k& < my. In other words, A is low rank or approximately low rank.

Note that since the sets are disjoints, K (I, I3) represents an off-diagonal block of K.

1.2 Admissibility

There are two large classes of rank structured algorithms based on the assumptions on the matrix
K. Consider two subsets 1, 5.

1. Weak admissibility: K is weakly admissibility if K (I, I{) is compressible.

2. Strong admissibility: K is strongly admissibility if the distance between the two sets
and Qg being greater than some distance D implies that the off-diagonal block K (I, I5) is
compressible (i.e. low-rank), see Figure 1.

D D
A A
00000000 00000000
00000000 00000000
00000000 D/>D 00000000

D| [seccssss ¢ — > [seccsccs| |D
00000000 00000000
00000000 00000000
00000000 00000000

Figure 1: Two boxes in R? with side length D are assumed to be numerically low rank if the distance
between them is at least D, while weak admissibility only requires them to be non-overlapping [4]

Note that strong admissibility is actually a weaker condition than weak admissibility. Strong
admissibility can also be stated as: all points outside of distance D away from the 2, have “low
rank interaction” with €;. FMM is a special case of strong admissibility: we can use a multipole
expansion only when sources and targets are far away, but compute all individual interactions for
neighbors. There are tradeoffs between those two classes in accuracy, speed and assumptions you
have to make. The two main features of rank structured matrix computations are:

1. Tt provides us with a way to apply approximate inverses, i.e., it allows us to compute B f where
B~ K.

2. It replaces the analytical work by a numerical approximation using the fact that some blocks
are low rank with good accuracy.

This type of algorithm can only be applied efficiently when there are low-rank blocks.

Next we are going to describe two linear algebra tools: a block diagonal factorization and inter-
polative decomposition, which we will combine to form the essential building block of rank structured
computation: skeletonization. The algorithms we will describe are called “skeletonization based al-
gorithms”, and were introduces by Martinssen and Rokhlin in [3]. In particular, we are looking at
making a multiplicative factorization which goes back to Greengard and Ho [2].

2 A block diagonal factorization

The first piece in performing skeletonization is block elimination. Assume that the matrix A €

RN>N "and consider a partition of the indices given by [n] = I U.J U R such that
Air Arg 0
A=A Ay Ar
0 Ars Agr

Suppose we want to solve a linear system with this matrix. We could try to use LU, or Cholesky. We
can handle the blocks separately if we can reduce the matrix to block diagonal form. Note that if we
assume Ay is non-singular (which is typically the case in applications), we can define the matrices:

I I A Ar
L= |Aj A} T U= I ;
I I

where the empty slots are zero entries. With this notation in hand, note that

X Arr
A= LAU = S, Aym
ARy ARr

The matrices L and U have explicit inverses that are very easy to compute given L, U:

I I —A A
L= |-Ap A T U-l= I
I I

That is, L and U differ from their inverses only by a negative sign in the (1,2) and (2,1) blocks
respectively. Furthermore, the matrix A is block diagonal. This implies that we only need to factor
the blocks separately which is computationally cheaper than working with the full matrix. Thus we
have a factorization which is cheap to invert:

A=LTAU .

This gives us a tool to transform a matrix where all indices “talk” to each other, from one where
only blocks talk to each other. If the large blocks of the matrix A have the same structure has A
then we can recurse this algorithm and break down our blocks further into smaller blocks. The next
section will show how to handle the case where the corner blocks Arr are non-zeros.

3 Interpolative Decomposition

3.1 Definition

Suppose we want to compute a low rank representation of a block of the matrix. We can use an SVD,
which provides the optimal rank r representation of a matrix, but the SVD is expensive to compute.
In order to get computationally cheaper algorithms, we need to define a “goodness” measure of a
low rank approximation of a function. Given |I| x |J| matrix Ay, and a tolerance €, an e-accurate
interpolative decomposition (ID) of A;; is a partition of the points in J into two sets:

1. skeleton points S
2. redundant points R
with S C J, R = J/S, and matrix T such that:

[Arr — ArsT |2 < €||Az2- (1)

In other words, it allows us to write the redundant columns of A (Arg) as a linear combination
of the skeleton columns of A (Ars) up to some accuracy. The matrix T gives us the interpolation
coefficients. Written this way, S = I. is a trivial solution for any accuracy, so we want |S| to be as
small as possible. Another way to state this is:

A[JH’N"A]S [I T],

where the matrix A;g is tall and skinny, and II is a permutation of the columns. In other words, we
represent the columns of A;; by a subset Ajg.

As stated earlier, the k truncated SVD of A provides the optimal rank &k approximation of A.
This does not provide the same guarantee, but there is no asymptotic difference. For example, if
the the SVD would provide us with an e-approximation of rank k, then this may provide us with
an e-approximation of rank k + 5. The next section will show that this can be computed at a lower
computational cost.

3.2 Computation
To compute the (ID), we use the QR pivoted column factorization. Recall that
A=QR

where @ is unitary and R upper triangular if a QR factorization of A. Now assume |I| > |J]|. A
pivoted QR factorization is defined by three matrices @, R, II such that

AR Rag
AHQ[i Rm]

where II is a permutation of the columns. We are going to choose II such that Rj; is as well
conditioned as possible. Finding the optimal II is NP-hard, but there are heuristics that work well

[1].

Consider the factorization where we have split the columns Q = [Q1 Q2]

All = [Q1 Q2] [ROH g;j = [Q1R11 Q1Ri2+ Q2R .

Let us get back to the matrices with indices I, .J, S, R with J = SUR, SN R = (). We are seeking
an ID of A;y;. We can set A;g = Q1 R11. Note that

Al = [Ars QiRiy + Q2R22] = [A;s Q1R11 Ry Rio + QaRas] = [Ars ArsRiy Riz + Q2Rao]

We can let T = Ryj' Ri2, and if || Raa|| = |QRa2|| < €, we may ignore it. Now note that up that
this gives us, up to permutations, a partition of the matrix A;;II = [AIS AIR} such that

ANl = [Ars Arr| = [Ars ArsT + QaRa) .

Thus
|Arr — ArsT|| = || Raz|| <,

which up to a constant is the definition of ID in (1).

Note that the condition that ||QRaz| = 0 is approximately equivalent to saying that Ajj is
compressible, which is the strong admissibility assumption. In practice, we don’t want to compute
the full QR, but we can a this trick so that at some point we are confident that we have a good ID
and ignore the rest of the computation. These factorizations have high-performance implementations
in e.g., Python, LAPACK, and MATLAB. Next, we put block diagonalization and ID together to
perform skeletonization.

4 Skeletonization

Assume we have a large domain € and a small box B in the corner of 2. We denote the neighbors
of B by N, and the points far away from B by F. This is illustrated in Figure 2.

Figure 2: The near-field N are the blue boxes and the far-field F' are the red boxes [4]

The idea is to use what interpolative decomposition to transform the matrix K into a matrix
with zero blocks on the bottom left and top right corner. Once the matrix has this structure we
can use the block diagonalization factorization that we covered in §2 to turn it into a block diagonal
matrix with a small block and a giant block.

We will assume strong admissibility, i.e. the interactions between B and N are not low rank, but
the interactions between B and F' are. Up to some permutation P we can write the kernel matrix
K in the following way:

Kpp Kpn Kpr
P*KP= |Kng Knnv Knr|,
Krp Krn Krpr

where we have assumed that |B| < |N| < |F|, and that Kpy is compressible. Assuming that K is
symmetric we compute an e-accurate ID of Kpp matrix with B=SUR

Kpp=|Krr Krs|~Kps|T 1],

where we have assumed without loss of generality that B = [R S]. This forms a partition of the
points in the box B into two sets, the set of redundant points F', and the set of skeletons points S.
Physically, the skeleton points are typically the points close to the boundary of the box, and the

points R are the points in the interior of the box. However, it is difficult to prove any such statement
rigorously.
Using our ID, we can write

Krr Ksr Kgn Kgr Krr Ksr Kgn TKrs
PKP — Ksp Kss Ksn Kgrn| | Ksr Kss Ksy Kgpn
Knr Kns Knnv Knr Kyr Kns Kynnv Knr
Krr Krs Krn Krpr TKrs Krs Kry Krr
If we define
I -T* I
I -T T
Ur = 7 L = 7
I I

we have that

Xrr Xrs XgN 0

Xsr Xss Xsn Ksr

Xnvr Xns Knnv Knp|’
0 Krs Krny Krr

UrP*KPLy ~

where X denotes blocks of the matrix that have been updated. Once again, L and Ur are very
easy to invert: we only need to flip the sign in the (2,1) and (1, 2) block respectively. We now have a
matrix with zero blocks in the bottom left and top right corner and can use the block diagonalization
algorithm described in §2. That is, using Xrgr as the “pivot” we can define matrices L and U such
that R
XrRr 0 0 0
0 Xss Xsn Ksr
0 Xns Xnn Knr
0 Krs Krn Krr

LUpP*KPLpTU ~

)

where X denote blocks that have changed. All the matrices L,U, LyUr are cheap to apply and
invert. We can use a factorization of the Xgrgr block. Factoring the large block is easier than
factoring the original matrix. This factorization is called the skeletonized matrix K with respect to
the block B, and is denoted Z(K; B).

Xpr O 0 0
0):fss):(SN Ksp
0 Xnys Xnn Knr
0 Krs Kry Krr

Z(K,B) = LUpP*KPLpTU =~

In the next lecture, we will show how to use this decomposition recursively to build a fast
algorithm to apply and invert large matrices.

References

[1] Gene Howard Golub et al. Milestones in matric computation: the selected works of Gene H.
Golub with commentaries. Oxford University Press, 2007.

[2] Kenneth L Ho and Leslie Greengard. “A fast direct solver for structured linear systems by re-
cursive skeletonization”. In: STAM Journal on Scientific Computing 34.5 (2012), A2507-A2532.

Per-Gunnar Martinsson and Vladimir Rokhlin. “A fast direct solver for boundary integral equa-
tions in two dimensions”. In: Journal of Computational Physics 205.1 (2005), pp. 1-23.

Victor Minden et al. “A recursive skeletonization factorization based on strong admissibility”.
In: STAM Journal of Multiscale Modeling and Simulation (2017).

