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1 Fast Multipole Method Continued

Low-rank assumption
Last time we worked on solutions to N-body problems in the form

φ(xi) =

N∑
j=1

K(xi, xj)qj (1)

domain ΩT domain ΩS

"well-separated"

xi yi

Specifically, let’s say we have domains ΩS of N
source points and ΩT of M target points, and these
domains are “well-separated” (we will formalize this
in section 3). Our goal is to compute the influence of
all source points onto target points.

Let the M × N matrix [K]ij = K(xi, yj) and as-
sume it is approximately low-rank, so that K ≈ UV T
with U of size M × P and V of size N × P . If P is
small then we can efficiently compute the effect of many points in the source domain on points in
the target domain.

This low rank assumption is the same as saying that we can represent K with a function of x
only and a function of y only

K(x, y) ≈
P∑
l=1

ul(x)vl(y)

when x, y are far apart.

2 Notation
For the following discussion of the FMM we first need to introduce notation for indexing with
respect to subsets of Ω. We will need a clean way to sum over a set of points, {xi}Ni=1 xi ∈ R2,
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which lie in box-like subregions of R2. If we define ΩT ⊂ Ω then let IT represent the indices of all
of the points in the domain ΩT . In particular,

i ∈ IT ⇐⇒ xi ∈ ΩT

Then we can rewrite Equation (1) as

Φ(xi) =
∑
j∈IS

K(xi, yj)qj

Furthermore, we will use these indices with matrices and vectors. Recall that the linear algebra
form of the N-body problem is

Φ = Kq

We can use IS , IT for domains ΩS ,ΩT , respectively, to write the statement

ΦΩS
(IT ) = K(IT , IS)q(IS)

which means that we assign to a portion of ΦΩS
the matrix-vector product of portions of K and

portions of q. The portions do not need to be contiguous. The subscript ΩS is a reminder that this
computation leaves out sources outside ΩS . In practice, we can avoid forming the entire matrix
K, which has O(N2) terms.

3 Formalize well-separated
A key assumption of the FMM is that the source and target domains are well-separated. We will
formalize what we mean by well-separated. Consequently, we will also show how to factor a kernel
into a low-rank approximation which has a known, prescribed accuracy.

Let us take the kernel to be the fundamental solution to Laplace’s equation in two dimensions.
This is (leaving out the constant 1

2π factor for brevity)

K(xi,xj) =

{
0 xi = xj

log (|xi − xj |) xi 6= xj

We can equate a 2D vector x with a complex number x. By log(|x−y|) = Real(log(x−y)) we can
drop the mod inside the log. This makes Taylor expanding (which comes up in the approximation)
easier, hence let’s stick with complex numbers.

Our x’s will be in ΩT and y’s in ΩS . Say these domains are boxes. The center of ΩT will be
called cT and the center of ΩS will be called cS .

K(x, y) ≈ log(x− y)

= log ((x− cS)− (y − cS))

= log (x− cS) + log

(
1− y − cS

x− cS

)
We can approximate this well if |y−cS ||x−cS | is less than 1 (remember the geometric interpretation, which
is that y is close to the center of its domain, but x is far away). After a Taylor expansion of the
second term, we have

= log (x− cS)−
∞∑
l=1

1

l

(y − cS)l

(x− cS)l
(2)

Low-rank approximation and error analysis
By truncating (2) to P terms we have the low-rank approximation

log (x− cS)−
P∑
l=1

1

l

(y − cS)l

(x− cS)l
(3)
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whose error is bounded by ∣∣∣∣∣
∞∑

l=P+1

1

l

(y − cS)l

(x− cS)l

∣∣∣∣∣
≤ 1

P + 1

∣∣∣∣∣
∞∑

l=P+1

(y − cS)l

(x− cS)l

∣∣∣∣∣
≤ 1

P + 1

∞∑
l=P+1

∣∣∣∣y − cSx− cS

∣∣∣∣l
Let γ = | y−csx−cs | and pull out a factor to make a geometric series, which leads to

=
1

P + 1
γP+1 1

1− γ

The first two terms depend on P and decay. The last term is a constant. Hence, we can choose
P to make this error as small as we want.

Let’s just use this approximation when γ < 1
2 . We’ll discuss this more later.

4 Multipole expansion
We have a low-rank way to compute K efficiently but we still need to accumulate the effects of
all source points onto each target point. A set of coefficients, ωSl , will compactly represent the
low-rank contributions of points in source box ΩS onto any point which is well-separated.

ωSl =


∑
j∈IS qj l = 0

∑
j∈IS

−1
l (yj − cS)lqj l ∈ {1, 2, . . . , P}

(4)

These coefficients are independent of the target domain so they can be reused many times.

5 Local Expansion
Now, substitute the low-rank approximation (3), expressed in terms of coefficients (4), into a
summation of (1) over all source points for a target point x ∈ ΩT ,

φ(x) =
∑
j∈IS

K(x, yj)qj

≈
∑
j∈IS

log(x− cS)qj +
∑
j∈IS

P∑
l=1

−1

l

(
yj − cS
x− cS

)l
qj

= log(x− cS)ωS0 +

P∑
l=1

(
1

x− cS

)l
ωSl (5)

This function is harmonic on the target domain, which is to say it solves Laplace’s equation (this
follows from the definition of the kernel as the fundamental solution). Thus it has a nice Taylor
expansion.

Exercise: Show that the Taylor expansion of (5) around box center cT is

φ(x) =

∞∑
l=0

(x− cT )lvTl (6)

Where vTl are some coefficients defined below. You may guess now that there is a fair bit of
analytical work involved in the design of the FMM.

vT0 = ωS0 log(cT − cS) +

∞∑
l=1

ωSl
(−1)l

(cS − cT )l
(7)
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vTl = −ωS0
1

l(cS − cT )l
+

∞∑
j=1

ωSj (−1)j
(
j + l − 1

j − 1

)
1

(cS − cT )l+j

These sums will get truncated, much like in the earlier Taylor expansion. (Scribe’s solution at
bottom).

6 Back to Linear Algebra
We’ve constructed a linear operator, so that

ωS = TMS q(Is)

See equation (4). TMS is a P + 1 by N matrix. The S denotes that it depends only on the source
domain, and the M denotes that it returns the multipole coefficients.

The v coefficients are a way to take multipole coefficients and give local coordinates. (The ter-
minology in the literature is inconsistent so you may see the coefficients named outgoing/incoming,
etc.)

After truncation of (7) we have
vT = TM2L

T,S ωS

where M2L means “multipole to local”, and the matrix depends on both domains T and S. This
matrix is P + 1 by P + 1.

Finally we have a local expansion.

φ(IT ) = TLT vT

from (6). This matrix is M by P + 1.
All of this is to say that

K(IT ,KS) = TLTM2LTMs

7 Uniformly distributed points

domain Ω

Ω1 Ω2

Ω16

...

Thus far we have not said anything about how to divide Ω into boxes. Let’s
consider the case where our points are nearly uniformly distributed inside a 2D
domain. Divide Ω into a grid of m by m boxes Ω1,Ω2, ...,Ωm2 .

We can write

φ(I1) =

m2∑
l=1

K(I1, Il)q(Il)

for points in box Ω1. Our low-rank approximation framework is not valid for all
source boxes. For example, it may be valid for l = 16 but not for l = 2 (refer to figure) since points
in neighboring boxes may not satisfy γ < 1

2 .
We will categorize the boxes based on adjacency. For box Ωi, we define Lni as the neighbors of

that box (i.e., the boxes that share an edge or corner with Ωi in the grid). Also, we define Lfi to
be all far boxes that are not Ωi and are not in the neighbor list of Ωi. Then

Φ(Ii) = K(Ii, Ii)q(Ii)︸ ︷︷ ︸
not low-rank

+
∑
j∈Ln

i

K(Ii, Ij)q(Ij)︸ ︷︷ ︸
not low-rank

+
∑
j∈Lf

i

K(Ii, Ij)q(Ij)

︸ ︷︷ ︸
low-rank

We want to pick an m so that the cardinality of the neighbor-list of any box is bounded by a
constant. Thus, the second sum is likely to be the most computationally expensive.

This suggests a simple algorithm—loop over the boxes, compute Φ(Ii) in these pieces, use
low-rank approximations for the second sum and exact computations for the rest.

• Loop over all boxes and compute multipole expansion coefficients.

• Compute all TM2L operators for almost all pairs of boxes. (It is not needed for neighbors,
but that’s a small-sized list.)

• Loop over boxes and compute local expansions plus neighbors.

If m is optimal (m2 ≈ N2/3), then for large N the middle step costs O(N4/3).
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Next lecture
From here, we will next discuss the case when the points are not uniformly distributed and describe
the complete FMM, which is a linear time algorithm.

Solution to exercise
By definition of Taylor Series, equation (6) implies that

vTn =
φ(n)(cT )

n!

where

φ(x) = log(x− cS)ωS0 +

∞∑
l=1

1

(x− cS)l
ωSl

Immediately we have

vT0 = log(cT − cS)ωS0 +

∞∑
l=1

(−1)l

(cS − cT )l
ωSl

Differentiating a few times yields

φ′(x) =
1

x− cS
ωS0 +

∞∑
l=1

−l
(x− cS)l+1

ωSl

φ′′(x) =
−1

(x− cS)2
ωS0 +

∞∑
l=1

l(l + 1)

(x− cS)l+2
ωSl

φ′′′(x) =
2

(x− cS)3
ωS0 +

∞∑
l=1

−l(l + 1)(l + 2)

(x− cS)l+3
ωSl

Generalizing gives

φ(n)(x) =
(−1)n−1(n− 1)!

(x− cS)n
ωS0 +

∞∑
l=1

(−1)n

(x− cS)l+n
(l + n− 1)!

(l − 1)!
ωSl

And from the first equation of this section we get

vTn =
(−1)n−1

n(cT − cS)n
ωS0 +

∞∑
l=1

(−1)n

(cT − cS)l+n
(l + n− 1)!

(l − 1)!n!
ωSl

= −ωS0
1

n(cS − cT )n
+

∞∑
l=1

(−1)l

(cS − cT )l+n

(
l + n− 1

l − 1

)
ωSl
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