
Data Sparse Matrix Computations - Lecture 3

Scribe: John Ryan

September 5, 2017

Contents
1 Application of Fast Fourier Transform 1

2 Project Topic Example 3

3 Beginning Fast Multipole Method 4

1 Application of Fast Fourier Transform

Discrete Convolution
The discrete convolution is a common technique in signal processing.

Suppose we have two signals, xi and yi for i = 0, ..., N −1 which are both periodic with respect
to N . That is,

xi+jN = xi

yi+jN = yi (1)

for any integer j. We’d like to compute the discrete convolution of x with y, which is defined as

gk = (x ∗ y)k =

N−1∑
n=0

xnyk−n (2)

for k = 0, ..., N − 1.
(Scribe note: for some visual explanations on convolutions, the reader may visit

https://en.wikipedia.org/wiki/Convolution and check out the "Visual Explanation" subsection)

Convolution as a Matrix/Vector multiplication
Notice that (2) can be written as

g = Y x

where g is a column vector with elements gk = (x ∗ y)k, x is a column vector with elements xk,
and Y is an NxN matrix. By examining (2), we can deduce that the elements of the first row of
the matrix Y should be

Y0,: = {y0, y−1, y−2, ..., y−(N−1)}

Similarly, the second row should be

Y1,: = {y1, y0, y−1, ..., y−(N−2)}

Now, we may take advantage of the periodicity of the signal y. Namely, we note that

y−1 = yN−1

y−2 = yN−2

and so on (see equation (1)). With this in mind, the rows of the matrix Y can now be written as

Y0,: = {y0, yN−1, yN−2, ..., y1}

1

Figure 1: An example of a discrete convolution, taken from https://tex.stackexchange.com/
questions/328627/compute-convolution-of-discrete-signals-in-tikz.

Figure 2: An example of a circulant matrix.

Y1,: = {y1, y0, yN−1, ..., y2}
and so on. Notice the pattern here - a given row is almost the same as the row above it in the
matrix, except that the last element has been made the first, and every other element has been
shifted to the right. Indeed, this is true for every row of the Y matrix, and as a result, the Y
matrix (as well as any other matrix satisfying this property that each row is a shift of the one
above/below it with an element on the end "wrapping around") is called a circulant matrix. See
figure 1.

Well that’s nice, but how does this help us? Recall that we’re trying to compute the matrix
vector product

g = Y x

It turns out that circulant matrices work well with the Fourier transform, in a way that will provide
us a smart way to perform the above operation

Fourier Transform of a Convolution
Recall from last time that the Discrete Fourier Transform of a signal (vector) x is

yk =
1√
2π

N−1∑
j=0

xje
−2πjk/N

and can be written as a matrix/vector product:

y = Fx

Recall also that we have an algorithm, the Fast Fourier Transform, which allows us to compute
the Fourier Transform in O(n log n), where n is the size of the original signal x. It turns out (and
we will show) that, if Y is a circulant matrix, then FY F ∗ is diagonal.

Let us start by left multiplying both sides of g = Y x by F .

Fg = FY x

ĝk =

N−1∑
l=0

N−1∑
n=0

xnyl−ne
−2πilk/N

Now we multiply the right side by e−2πik(n−n)/N (which is equal to 1) and we get

ĝk =

N−1∑
l=0

N−1∑
n=0

xnyl−ne
−2πilk/Ne−2πik(n−n)/N

=

N−1∑
n=0

xne
−2πikn/N

N−1∑
l=0

yl−ne
−2πi(l−n)/N

2

Now we notice that, due to the periodicity of y, the inner sum constitutes a Fourier transform of
y regardless of what n is. Therefore, we have

ĝk =

N−1∑
n=0

xne
−2πikn/N ŷk

= x̂kŷk

Ah! In matrix/vector form, this says that

Fg = Diag(ŷ)Fx

where Diag(ŷ) is a diagonal matrix whose elements are Dii = ŷi. Then, left multiplying by F ∗

(which is the inverse of F), we get
g = F ∗Diag(ŷ)Fx (3)

which, since g = Y x, implies that
F ∗Diag(ŷ)F = Y

or
Diag(ŷ) = FY F ∗

which completes our proof that FY F ∗ is diagonal.
So now, instead of the naive matrix multiplication of Y x that would take O(n2) steps, we may

perform the operations in equation (3).

1. First, FFT x to get x̂ – O(n log(n) steps,

2. then FFT y to get ŷ – O(n log(n)) steps,

3. then multiply x̂ by Diag(ŷ) – O(n) steps,

4. then finally perform an inverse Fourier transform to get g, – O(n log(n)) steps.

This takes O(n log(n)) time.
There are two other important classes of matrices that we talk about today.

1. Toeplitz matrices, whose entries Tij depend only on i− j. You can imagine that the "diago-
nals" are constant. Example: circulant matrices..

2. Hankel matrices, whose entries Hij depend only on i + j. You can imagine that the "anti-
diagonals" are constant. Example: if you look at Figure 1’s reflection in a mirror.

Exercise: you can embed a Toeplitz or a Hankel matrix of size N into a circulant matrix of size
2N − 1, and speed up matrix multiplication that way. How?

(Scribe’s answer at end of document)

2 Project Topic Example
Suppose we have

F (ω) =

N−1∑
n=0

xN (t)e−itω

So far, we have considered this for evenly spaced ωk, like so

ωk =
2πk

N

This is an equispaced transform
What about ωk that aren’t evenly spaced? Or even, instead of summing over t = 0, 1, 2..., what

about summing over tk for k = 0, 1, 2, ... and the tk aren’t necessarily evenly spaced. How do we
approach such transforms algorithmically?

This leads to a set of algos known as USFFTs (unequally spaced FFTs) or NUFFTs (non-
uniform FFTs).

A potential plan for the final project could be to

3

Figure 3: An example of an uneven frequency sampling. How do we efficiently and accurately
transform to spatial coordinates?

• look at and describe/discuss these algorithms (similarities/differences),

• implement some of them, and look at how they scale (whether it’s as expected or not), and
explore their behavior and properties, and

• look into extensions into 2D with applications.

An example of an application might be the procedure by which many modern medical machines
infer the density of a body part by firing signals at it from many different angles and seeing what
goes through. The samples one gets from this procedure are not evenly spaced in frequency space,
so something special needs to be done to convert the raw data into information on what’s going
on in spatial coordinates.

3 Beginning Fast Multipole Method
Now we’re interested in computing

Φ(xi) =

N∑
j=1

K(xi, xj)qj (4)

for i = 1, ..., N
The qi are weights, or charges.
For now, let’s say K(xi, xj) = log(‖xi − xj‖) when xi 6= xj and K(xi, xj) = 0 when xi = xj .
Much like in our previous discussions, we can consider (4) as a matrix/vector product.

Φ = Kq

where K is a matrix defined by Kij = K(xi, xj).
Enter the Fast Multipole Method (FMM), which approximates the solution Φ in O(N logd−1(1

ε))
time, where d is the dimension and ε is a measure of the precision. This runtime is accurate as
ε→ 0.

It does this by approximating K(x, y) when it seems reasonable. For example, suppose you
have a set of M "targets" xi and a set of N "sources" yi, and the sources are far from the targets
in space, so that K(x, y) is smooth. Suppose further that your kernel can be approximated like so

K(x, y) ≈
p∑
l=1

ul(x)vl(y)

4

which is to say, there is a low-rank approximation for the kernel. Then (4) may be written

Φ(xi) =

N∑
j=1

p∑
l=1

ul(xi)vl(yj)qj

(Scribe’s note: I believe the switch from x to y is meant to emphasize that we are now discussing
sets of sources and targets, rather than just some set of points).

Reordering the sums, we get

Φ(xi) =

p∑
l=1

ul(xi)

N∑
j=1

vl(yj)qj

Notice that the inner sum has no dependence on i. Therefore, we may start by performing that
sum for every l (which will take O(MP) time), and then for each i we only need to compute
the outer sum (which takes O(P) time, and there are N different values of i, so in total it takes
O(NP)). Therefore, we can find the entire Φ vector in O(NP +MP) time.

Linear Algebra interpretation
If we just naively multiplied Kq to get Φ, that would take us O(MN) time. However, with the
FMM, we’re essentially giving K a low-rank approximation:

K = uvT

where u is anM by p matrix and v is an N by p matrix. Then Φ = Kq = uvT q takes O(MP+NP)
steps.

Scribe’s answer to exercise:
At first I tried typing it up, but it didn’t go well. The following pages contain the answer for
Toeplitz matrices - for Hankel matrices everything is the same except that C is formed in a slightly
different way.

Note: there is a slightly better approach than what I wrote. Instead of doing an interlacing
like I did, you can make the first row of C be the first row of A followed by the first N − 1 entries
of the last row of A. If you make a circulant matrix out of this, the upper left NxN block will be
A, and in the final result, the vector we desire will be the first N entries of the output, rather than
being every other entry as in the images below. Since it is easier to read/write sequential memory,
this approach is better.

References
[1] Bracewell, R. (1986), The Fourier Transform and Its Applications (2nd ed.), McGraw–Hill,

ISBN 0-07-116043-4.

[2] Carrier, J.; Greengard, L.; Rokhlin, V. A fast adaptive multipole algorithm for particle simula-
tions. SIAM J. Sci. Statist. Comput. 9 (1988), no. 4, 669–686.

[3] Cooley, James W.; Tukey, John W. (1965). An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation. 19 (90): 297–301.

[4] Damelin, S.; Miller, W. (2011), The Mathematics of Signal Processing. Cambridge University
Press, ISBN 978-1107601048

[5] Davis, Philip J., Circulant Matrices, Wiley, New York, 1970

[6] Golub G.H., Van Loan C.F. (1996), Matrix Computations (Johns Hopkins University Press)
§4.7—Toeplitz and Related Systems

[7] Golub, van Loan, §4.7.7 Circulant Systems

5

[8] Greengard, L.; Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys. 73
(1987), no. 2, 325–348.

[9] Greengard, Leslie; Rokhlin, Vladimir A new version of the fast multipole method for the Laplace
equation in three dimensions. Acta numerica, 1997, 229–269, Acta Numer., 6, Cambridge Univ.
Press, Cambridge, 1997.

[10] Greengard L, Lin P (2000) Spectral approximation of the free-space heat kernel. Applied and
Computational Harmonic Analysis 9:83–97.

[11] Nabors, K.; Korsmeyer, F. T.; Leighton, F. T.; White, J. Preconditioned, adaptive, multipole-
accelerated iterative methods for three-dimensional first-kind integral equations of potential the-
ory. Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992). SIAM
J. Sci. Comput. 15 (1994), no. 3, 713–735.

[12] Rockmore, D.N. (January 2000). The FFT: an algorithm the whole family can use. Computing
in Science Engineering. 2 (1): 60–64.

[13] Rokhlin, V. Rapid solution of integral equations of scattering theory in two dimensions. J.
Comput. Phys. 86 (1990), no. 2, 414–439.

[14] Rokhlin, V. Diagonal forms of translation operators for the Helmholtz equation in three di-
mensions. Appl. Comput. Harmon. Anal. 1 (1993), no. 1, 82–93.

[15] Van Loan C.F., Computational Frameworks for the Fast Fourier Transform (SIAM, 1992).

6

7

8

9

	Application of Fast Fourier Transform
	Project Topic Example
	Beginning Fast Multipole Method

