
Lecture 27: Fast Laplacian Solvers

Scribed by Eric Lee, Eston Schweickart, Chengrun Yang

November 21, 2017

1 How Fast Laplacian Solvers Work

We want to solve Lx = b with L being a Laplacian matrix. Recall that L~1 = ~0 and L � 0. If the
original graph is connected (i.e., we can’t partition L to be block diagonal), then L has exactly 1
zero eigenvalue, with corresponding eigenvector ~1.

There are a number of ways to solve this problem, including iterative methods such as conjugate
gradient (with modifications to account for the zero eigenvalue). However, Laplacian matrices have
a well-studied structure that supports direct methods as well. Here, we introduce one such method,
derived from [1]; though it is not the most asymptotically efficient method in the literature, it is
relatively simple.

Notation: A � B means A−B � 0.

To solve this problem “fast”, we have the following steps:

(i) Compute a sparse, approximate Cholesky factorization PLDLTPT , in which P is a permu-
tation matrix, L is lower triangular, D is diagonal. Furthermore, nnz(L) is in the same order
as nnz(L) log3 n, and if we let Z = PLDLTPT , 1

2L � Z �
3
2L.

(ii) Iterative refinement with Z†:
x(0) = ~0

x(i+1) = x(i) − 1

2
Z†(Lx(i) − b)

This is similar to iterative refinement. Each iteration requires some sparse matrix-vector
multiplications and a couple triangular solves, which can can be done in time proportional
to the number of nonzeros in the matrix; overall, one iteration takes only O(nnz(L) log3 n)
computations, which is fast.

We can prove that after t iterations, we can get an ε-accurate solution, i.e. ||X(t)−L†b||L ≤ ε||L†b||L
where t ∈ O(log(1

ε)).

In order to perform step (i), we will first consider the dense Cholesky factorization, and show how
it can be modified in order to produce the decomposition specified.

1

2 Dense Cholesky Factorization

Let S(0) = L. In the first step to solve Lx = b, we might want to eliminate variable 1 and get a

smaller system S(1)x′ = b′, in which b′(1) = 0, and x′ =


0
x2
...
xn

.

Algebraically,

S(1) ← L− 1

L(1, 1)
L(:, 1)L(:, 1)T =


0 0 · · · 0
0
... S̃(1)

0


where S̃(1) is a Laplacian matrix of size (n− 1)× (n− 1), and is known as the Schur complement.

Further, we abstract 1 to a vertex of the graph v1 and define

α1 = L(v1, v1)

c1 =
1

α1
L(:, v1)

then S(1) = L− α1c1c
T
1 .

Algorithm 1 Dense Cholesky Decomposition

1: Input matrix L
2: S(0) ← L
3: for k = 1, 2, · · · , n− 1 do
4: select a variable vk ∈ V \{v1, · · · , vk−1}
5: αk ← S(k−1)(vk, vk)
6: ck ← 1

αk
S(k−1)(:, vk)

7: S(k) ← S(k−1) − αkckcTk #update
8: end for
9: Set αn ← S(n−1)(vn, vn), cn = evn

10: C ← (c1, c2, · · · , cn)
11: D ← diagonal matrix with D(i, i) = αi (Note: L =

∑n
i=1 αicic

T
i = CDCT)

12: P ← permutation matrix, s.t. Pei = evi
13: L ← PTC (lower-triangular)
14: Output L = PLDLTPT , a Cholesky decomposition of L

3 Cholesky and Sparsity

In order to understand how to construct a sparse Cholesky decomposition, it is informative to
first consider the dense Cholesky algorithm to identify where sparsity can be lost as the algorithm
progresses. Consider the Laplacian of a star graph, that is, a graph where each vertex shares an
edge with a single central vertex. If the central vertex is 1, that is, it corresponds to the first row
and column of the Laplacian matrix, then the Laplacian matrix has a dagger structure, where the

2

only nonzeros reside on the diagonal, the first column, and the first row. For example, the sparsity
pattern Laplacian of the 5-star graph is shown below:

× × × × ×
× ×
× ×
× ×
× ×


However, this sparsity is destroyed when constructing the Schur complement. Recall S(1) = L −
αvcvc

T
v . The vector cv contains an entry for every edge incident to v, so the low-rank matrix cvc

T
v

contains the square of this number of entries. This implies that, even though S(1) will have zeros
along the first column and row (eliminating O(deg(v)) entries), subtracting Lv adds O(deg2(v))
additional entries. In the context of graph theory, this amounts to removing a vertex’s edges from
the graph, but forming a clique with each of its former neighbors. This can be disastrous in the
case of a star graph structure. If the central vertex is chosen, S(1) becomes a dense matrix with
zeros only in the first row and column, so the sparsity pattern is effectively destroyed:

× × × ×
× × × ×
× × × ×
× × × ×


Even for general graphs, computing S(i) for arbitrary i could potentially destroy any sparsity that
was apparent in the original structure, and the problem compounds as the algorithm progresses.
Some sparsity can be maintained by carefully choosing the variable vk in step 4 of algorithm 1 such
that not too many edges are added to the subsequent graph. For instance, in the case of a star
graph, sparsity is maintained if the central vertex is chosen last. However, choosing the optimal
ordering of variables is hard in general. Heuristics for variable selection exist, but they lack any
guarantees on the level of sparsity maintained. We will now introduce an algorithm that sacrifices
numerical accuracy to gain sparsity guarantees.

4 Sparse, Approximate Cholesky

The algorithm for the sparse, approximate Cholesky decomposition is quite similar to the standard
Cholesky decomposition. However, sparse Cholesky seeks a sparse L instead of a dense one and is
willing to incur some approximation error as a trade-off. In this light, the key difference between
dense and sparse Cholesky is the change from a (possibly dense) Schur Complement (step 7 in
Algorithm 1) at each step in the inner loop to a sparse approximation of the Schur Complement.

As a preprocessing step, the input graph is first converted to a multigraph, where pairs of ver-
tices can share multiple edges. Any such multigraph’s Laplacian can be represented by a sum of
Laplacians, so this does not change the underlying problem.

3

Algorithm 2 Sparse Approximate Cholesky Decomposition

1: Input L ∈ Rn×n, ε, δ
2: Ŝ(0) ← L with each edge e split into ρ = d12(1 + δ)2ε−2log2(n)e sub-edges ê1 . . . êρ, with

corresponding weights w(êi) = 1
w(e) for i ∈ {1, . . . , ρ}

3: Define D ← 0n×n i.e. a diagonal matrix containing all zeros
4: Let π be a uniformly random permutation over {1, . . . , n} and let Pπ be its permutation matrix
5: for k = 1, 2, · · · , n− 1 do
6: D(π(k), π(k))← Ŝ(k−1)(π(k), π(k))
7: ck ← Ŝ(k−1)(:, π(k))/D(π(k), π(k)) if D(π(k), π(k)) 6= 0 or 0 otherwise
8: Ck ← cliquesample(Ŝ(k−1), π(k))

9: Ŝ(k) ← Ŝ(k−1) − Ŝ(k−1)
π(k) + Ck where Ŝ

(k−1)
π(k) is the Restricted Laplacian of Ŝ(k−1)

10: end for
11: D ← Ŝ(n)

12: L ← PTπ (c1, c2, · · · , cn)
13: Output L ≈ PπLDLTPTπ , a Cholesky decomposition of L

This algorithm is a bit hard to parse, but there are a few things to note.

• Ŝ is an approximate Schur Complement, and we expect it to be sparse.

• The Restricted Laplacian Sπ(k) of a matrix S removes the π(k) row and column of S (the
naming is self-evident).

• Finding an optimal ordering of nodes to minimize the number of nonzeros incurred in L is a
known hard problem. As a result, we pick an arbitrary permutation π reordering the nodes
uniformly at random so that, in expectation, we are picking some generic ordering of nodes.

• The function cliquesample(S, k) returns i.i.d. samples of edges in an edge set that would
have been introduced by eliminating vertex k from the graph S. More generally speaking,
one may view cliquesample(S, k) as a the method to construct a sparse Schur Complement
via random sampling. We give the algorithm for cliquesample(S, k) below:

Algorithm 3 Clique Sample

1: Input S ∈ Rn×n, v
2: for i = 1, 2, · · · ,degS(v) do
3: sample e1 from list of multi-edges on v with probability w(e)/wS(v)
4: sample e2 from list of multi-edges incident on v uniformly at random
5: if e1 has endpoints v, u1 and e2 has endpoints v and u2 respectively, u1 6= u2 then

6: Yi ← w(e1)w(e1)
(w(e1)+w(e2))

(eu2
− eu1

)(eu2
− eu1

)T

7: else
8: Yi = ~0
9: end if

10: end for
11: Output

∑
i Yi

Note that degS(v) = ρdegL(v). The parameters ε and δ control sampling probability of cliquesample(S, k)
by controlling the number of multi-edges created. Consequently, changing ε and δ allow one to
change the quality of the approximation made by Algorithm 2. This can be made precise through
the following theorem:

4

Theorem 4.1 Given a connected multigraph G = (V,E) with positive edge weights, graph Lapla-
cian L, δ ≥ 0, and 0 < ε ≤ 1

2 , the Sparse Cholesky algorithm returns a factorization L ≈
PLDLTPT with the property

(1 + ε)L � PLDLTPT � (1− ε)L

with probability at least

1− 2

nδ

with the expected number of nonzeros in L given as

nnz(L) = O(nnz(L)log3(n))

and the expected runtime

O
(δ2
ε2
nnz(L)log3(n)

)
Theorem 4.1 gives us bounds and expectations on the runtime, number of nonzeros, and quality of
approximation given some ε and δ. The proof can be found in [1], but the key point of the proof is
that cliquesample(S, k) was constructed specifically to make expectations and probabilities work
out nicely.

5 Further Thoughts not Discussed

The paper [1] introducing this fast laplacian solver was very theoretical in nature and did not
provide any experimental results. Consequently, a few naturally arising computational questions
were left (not necessarily difficult ones) unanswered. One might wonder why sparse and exact
Cholesky factorization pivoting schemes were not pursued —are they slower? For example, Nested
Dissection [3] is one traditional pivoting scheme used to minimize sparsity in L without accruing
any approximation error, thus allowing for a direct solve via back-substitution. Because L is sparse,
another interesting question is whether using Conjugate Gradient on the equation Lx = b, perhaps
in tandem with the sparse approximate Cholesky factorization as a preconditioner, is faster or
more robust compared to the solver in [1].

Currently, the fastest Laplacian solver is the algorithm introduced in [2], which operates in nearly

O(nnz(L) log
1
2 n) time (up to polylog factors). However, the machinery behind this algorithm is far

more complex than the solver in [1]. In short, the method recursively constructs preconditioners for
the input Laplacian by looking at sparse subproblems, which involve a carefully chosen spanning
tree and a small number of off-tree edges, weighted by a metric that is similar to the leverage score
introduced in previous lectures.

References

[1] Rasmus Kyng and Sushant Sachdeva. Approximate Gaussian Elimination for Laplacians: Fast,
Sparse, and Simple. 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 2016.

[2] Cohen, Michael B., et al. Solving SDD linear systems in nearly m log
1
2 n time. Proceedings of

the forty-sixth annual ACM symposium on Theory of computing. ACM, 2014.

5

[3] George, Alan Nested dissection of a regular finite element mesh. SIAM Journal on Numerical
Analysis 10.2 (1973): 345-363.

6

