
CS 6220 Data-Sparse Matrix Computations November 16, 2017

Lecture 26: Low Rank + Sparse and Fast Laplacian Solvers

Lecturer: Anil Damle

Scribes: Andrew Horning, Ariah Klages-Mundt, Lily Wang

1 Introduction

In this lecture, we finished off the low rank + sparse recovery topic from last class and laid
the groundwork for fast Laplacian solvers.

2 Low Rank + Sparse

Suppose we are given a matrix A which has a low rank plus sparse decomposition A = L+S
with suitable low rank matrix L and sparse matrix S. In Lecture 25, we discussed methods
and theory for the recovery of L and S via Principle Component Pursuit (PCP),

min
L,S
‖L‖∗ + λ|||S|||1, (1)

subject to A = L+ S.

Interestingly, this approach can be extended to situations in which a portion of the
entries of A are missing or unknown. This is of great importance for recommender systems,
which seek to use incomplete sets of user rankings to predict user preferences [1]. For a
more detailed discussion, see Section 1.2 on the Netflix Prize in Lecture 25.

Let Ω represent the set of known entries (i, j) of A and let PΩ be the orthogonal pro-
jection onto the space supported on Ω,

(PΩX)ij =

{
Xij (i, j) ∈ Ω

0 otherwise.

If we only have partial information about A and want to recover L and S, we may write

Y = PΩA = PΩ(L+ S) = PΩL+ S′.

To recover the low rank component L of A using this incomplete data, we can reformulate
(1) by relaxing the constraint on L and S:

min
L,S
‖L‖∗ + λ|||S|||1, (2)

subject to PΩ(L+ S) = Y.

Here, Y = PΩA represents the known entries of A. For example, in the Netflix Prize
example, Y corresponds to a set of video rankings by a subset of users. Thus, the observation

26: Low Rank + Sparse and Fast Laplacian Solvers -1

operator PΩ describes what data is visible to us, e.g. what movies have actually been ranked
by which users. In this way, (2) seeks minimimizers L and S that agree with the known
entries of A.

In Lecture 25, Theorem 1, we saw that (1) enjoyed strong theoretical guarentees for the
recovery of L and S. A similar result holds for (2). Before we present this theorem, we
recall the definition of an incoherence condition.

Definition 1 (Lecture 25, Def 3) Let L = UΣV T =
∑k

i=1 σiuiv
T
i be the singular value

decomposition of L. L satisfies an incoherence condition with parameter µ if the following
conditions are satisfied.

1. maxi ‖UT ei‖22 ≤
µk
n .

2. maxi ‖V T ei‖22 ≤
µk
n .

3.
∣∣∣∣∣∣UV T

∣∣∣∣∣∣
∞ = maxij |(UV T)ij | ≤

√
µk
n2 .

Speaking loosely, the incoherence condition ensures that L is not too sparse, so as to avoid
an identifiability issue between L and S. Provided that the identifiability issue is avoided, we
obtain a strong theoretical guarentee for the recovery of L and S, even when our knowledge
of A is incomplete.

Theorem 1 (Candes et. al. 2011 [1] Suppose that L is n× n and satisfies an incoherence
condition with µ, and Ω is uniformly distributed among all sets of cardinality p = n2/10.
Now, suppose each observation is corrupted with probability τ independently. Then, there
is a constant c such that with probability 1 − cn−10, (2) with λ = 1√

n/10
is exact. That is,

if L̂ is a minimizer of (2), then L̂ = L provided that

rank(L) ≤ c1nµ
−1(log n)−2 and τ ≤ c2

Above, c1 and c2 are positive numerical constants.

Note the similarities and differences between the recovery guarentees for the case where
A is known fully, althoug some subset of data may be arbitrarily corrupted (Lecture 25,
Theorem 1), and the case where A is known only partially and, again, contains some
corrupted data (Theorem 1 above). They both require only modest demands on the rank
of L, which grows linearly with n (apart from a log factor). In both cases, the constant
c in the probability of successful recovery depends on the constants c1 and c2. However,
note that the size of the set of corrupted entries is fixed in the complete data case and
the probability of succesful recovery depends (through c) on this size. In the incomplete
case above, the corruption is probabilistic across the known entries and the probability
of successful recovery depends (through c) on the likelihood τ that an entry is corrupted.
Remarkably, in both cases the probability of failure decreases rapidly as the size n of the
data increases. Finally, the choice p = n2/10 in Theorem 1 is somewhat arbitrary. Similar
statements could be proved for other choices of p, although the probability of success, the
multiplier λ, and the constants c1, c2, and c would be impacted.

26: Low Rank + Sparse and Fast Laplacian Solvers -2

3 Introduction to Laplacian Matrices

We now change topics to discuss a certain class of linear systems that can be solved in
approximately linear time. These systems are described by Laplacian matrices, which we
will introduce in this section.

Consider a weighted, undirected simple graph G with vertex set V , edge set E, and
weights wu,v > 0 on each edge (u, v) ∈ E. The adjacency matrix A of G is defined by

Au,v =

{
wu,v if(u, v) ∈ E
0 else

.

As an example, consider the graph in Figure 1. For this graph, the adjacency matrix is

1	 2	

3	 4	

Figure 1: An example graph

A =


w1,2

w1,2 w2,4

w3,4

w2,4 w3,4

 .
For node u ∈ V , the degree of u is defined

d(u) =
∑
v∈V

wu,v,

which is equivalent to a row sum of A. Define D to be the diagonal matrix of node degrees
in G.

The Laplacian matrix of G is then L = D − A. It can equivalently be defined via a
quadratic form: for x ∈ R|V |,

xTLx =
∑

(u,v)∈E

wu,v
(
x(u)− x(v)

)2
.

In general, we can think of a Laplacian matrix L as any matrix with the following
properties:

26: Low Rank + Sparse and Fast Laplacian Solvers -3

• row sums = 0

• non-positive entries off the diagonal.

Notice that Le = (D − A)e = 0, where e is the all ones vector. Thus the null space of
L is nontrivial, and L has a 0 eigenvalue. We will generally be interested in solutions with
prescribed entries of the pseudo-inverse.

Now that we’ve introduced Laplacian matrices, when do we actually want to solve
systems of this type? We provide three common instances of these systems as motivation.

1. Solving max-flow problems. In this case, we have a weighted network that de-
scribes flow capacity over any given edge. We are interested in the maximum flow
that is achievable from a given source node to a given target node. We can write
this problem as a linear program. When solved with an interior point method, this
requires many solutions of restricted Laplacian systems.

2. Resistor networks. In this case, edges are resistors with weights 1
resistance . Then

if iext defines a current flow in and out of given nodes, solving Lp = iext gives a
potential value for each node. If iext describes unit flow into u and unit flow out of v,
then p(u)− p(v) describes the effective resistance between u and v.

3. Solving PDEs. Laplacian matrices often arise when discretizing PDEs. For instance,
solving general elliptic PDEs with finite element methods yield Laplacian systems.

Note that the graphs in the last case have a lot of structure (e.g., lattice). We will
be concerned with more general graphs, where we don’t assume anything about graph
structure.

4 Fast Laplacian Solvers

In this section, we will introduce ingredients necessary for solving Laplacian systems ‘fast’.
I.e., in time similar to O

(
nonzeros(A) log

(
1
ε

)
logc n

)
.

Say we want to solve Lx = b. We can do this with a Cholesky decomposition in the
following way:

1. Compute L = CCT , where C is lower triangular.

2. Solve Cy = b.

3. Solve CTx = y.

Note here that L is symmetric positive semi-definite. It has non-trivial null space, but if G
is connected, it only has one 0 eigenvalue, which Cholesky can handle. On the other hand,
if the graph is not connected, then L is block diagonal and can be decomposed into separate
smaller Laplacian systems that describe connected subgraphs.

Steps 2 and 3 above can be solved in O(nonzeros(C)) time. Thus if we want to use the
Cholesky decomposition in a fast solver, we need to control the sparsity of C. The following
example illustrates how this can be a problem.

26: Low Rank + Sparse and Fast Laplacian Solvers -4

Example 1 Consider the matrix L corresponding to a star graph, in which the 1st column,
1st row, and diagonal are the only nonzeros.

L =


× × × . . . ×
× ×
× ×
...

. . .

× ×


The sparsity of L is O(n) where n is the number of nodes. Now consider one “step” into
the Cholesky factorization, which yields the following matrix

× 0 . . . 0

0
... Dense
0

 .
In just one step we have returned to something with O(n2) nonzero entries.

If L is sparse, we would like to preserve this sparsity in a Cholesky factorization. One
idea is to reorder the rows and columns of L in a way such that the Cholesky factorization
is sparse. I.e., for a permutation matrix P , we want PLP T to have sparse Cholesky factors.

As we will see in the next lecture, one way to get to a fast solver is to

1. Compute an approximate Cholesky factorization with controlled sparsity. I.e., a
Cholesky factorization of something close to L: L ≈ PCCTP T . We will see how
to do this by randomly throwing some stuff away at each step of the factorization.

2. Use this as a preconditioner in an iterative method in order to bound the number of
iterations required.

The end algorithm requires covering both fronts: maintaining sparsity of a Cholesky fac-
torization and bounding the number of steps in an iterative method.

References

[1] Emmanuel J Candès et al. “Robust principal component analysis?” In: Journal of the
ACM (JACM) 58.3 (2011), p. 11.

26: Low Rank + Sparse and Fast Laplacian Solvers -5

	Introduction
	Low Rank + Sparse
	Introduction to Laplacian Matrices
	Fast Laplacian Solvers

