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1 Introduction

In the previous lecture, we observed that it is possible to recover a sparse solution to Ax = b by solving a
minimization problem involving the 1-norm. In this lecture, we consider a matrix A that can be written as
A =L+ S5, where L is a low rank matrix and S is a sparse matrix, and seek a method that recovers L and
S. We remark that Lecture 26 forms a sequal to these notes and addresses the technical details related to
recovery under the assumption that only a subset of the entries of A are observable. To motivate this work,
we begin with two application-based examples.

1.1 Background subtraction

Let A € R™*™ be a matrix where each column j is a set of pixels representing the image recorded in a video
at time j. Often, the background in a recording is static or varies slowly with time. For this reason, the
background can be represented by a low rank matrix L. Motion in the foreground will typically not be low
rank. However, once it is separated from the background, the foreground represents only a small fraction
of the entries in A, and can encoded as a sparse matrix S (see Figure 1). By finding L and S, expensive
computations involving the explicit representation of A can be avoided. A background subtraction method
is described in detail in [7], and similar methods are described for a related application involving dynamic
MRI data in [6].

1.2 The Netflix Prize

In 2006, the movie-streaming service Netflix offered a prize of $1,000,000 to any team or individual that could
develop a collaborative filtering algorithm that outperformed their own algorithm for predicting user reviews
of movies. The authors of the prize-winning result argue in [5] that a matrix factorization-based approach
is key to the successful development of highly effective recommender systems. This problem appears as an
example in a broader overview of matrix recovery problems in [3].

Unlike background subtraction, the Netflix recommender system is an example of a low rank + sparse
recovery problem where only a small subset of the entries of A are observable. A definition of the matrix
A € R™*™ ig given in Figure 1. Each row denotes a user, and each column denotes a movie title. The
users rate each movie they watch by selecting a number of stars (1 - 4), and these are recorded as entries
in A. The matrix A that we seek to recover is dense: It captures a hypothetical underlying truth, with
every entry reflecting the true rating that every user would give to every movie. In reality, each user has
only watched a small subset of the entire possible set of movies, so only a small subset of entries in A are
ever observable. Based on these observations, a predictive recommender system tries to guess what missing
entries of A should be. It may not be immediately obvious that A is a low rank + sparse matrix. We give
the following explanation:

The low rank component. We assume that a perfect representation of A is well-approximated by
a low rank matrix L because we expect that many users behave similarly; we only require k subgroups of



users, where k < m to make accurate predicitions. Likewise, we expect that broad subcollections of movies
will be rated similarly by groups of users, so they can also be represented by a small collection j < n.

The sparse component. We can only observe a small portion of the true entries of A, and we realize
that some of these observations might be outliers. To account for this and make our recommender system
more robust, we write A = L 4+ S, where S denotes a small amount of noise associated with the observed
entries.
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Figure 1: Left: The matrix A encodes the pixels of an image at each time step in a video. The foreground
consists of a sparse collection of pixels that vary over time, whereas the background remains nearly static.
Right: The matrix A encodes ratings for a collection of movies (column indices) on a 1 to 4 scale for users
(row indices). Only a small portion of the entries of A are observable.

Methods and theoretical results related to finding L and S in problems like this one are given in the
notes for Lecture 26.

2 Solving the recovery problem via Principle Component Pursuit.

2.1 Recovery method

We now outline a method for recovering the matrices L and S in the background subtraction example, and
additionally discuss the assumptions needed to theoretically guarantee that L and S can be recovered. In
order to sketch a method for solving this problem, we require definitions for a few key concepts.

Definition 1. For a matriz M € R™*"  let |[M|. = Z?;irl’(m’n) ai(A) be the nuclear norm of M, where
o;(M) are the singular values of M. One can also view the nuclear norm as the l; norm applied to the vector
of M’s singular values.

Definition 2. For a matriz M € R™*", let [[ M|, = >, ; [Mij| be the element-wise Iy norm of M.
Equipped with these two notions, we state the following optimization problem:
(P1) miniize 2], + NJISIl,

subject to A=L+S,

where ) is a positive tuning parameter. Intuitively, the minimization of L in nuclear norm encourages the
rank of L to be small. Minimizing S with respect to the ||-||| norm promotes sparsity in S. Seeking the low
rank and sparse components of A through solving this optimization problem is known as principle component
pursuit, and this strategy is analyzed in greater detail in [4, 2].

Suppose that L and S are minimizers of the problem (P1). If the true solution is given by A = L+ 5,
we want to know whether L = L and S = S.



Without additional assumptions on L and .S, this problem may not have a unique solution, since there
may be issues related to identifiability. Consider, for example, the matrix

A= eie? + eifef,,

where (i,7) # (¢/,7"). This scenario is problematic, since we cannot determine whether L = eie;f and
S = eyej, or, for example, L = e;e] + epe], and S = 0. Other combinations are also possible. The trouble
here is that matrices like eief are both low rank and sparse. To avoid the identifiability issue, we must
impose additional conditions on L and S ensuring that they cannot be simultaneously low rank and sparse.

We enforce the condition that L is not sparse through the use of an incoherence condition, defined below:

Definition 3. Let L = UXLVT = Zle ouv] be the singular value decomposition of L. L satisfies an

i
incoherence condition with parameter p if the following conditions are satisfied.

1. max; [|[UTe;|3 < L

2. max; |[V7Te;||3 < L&,

3. UV = maxi; (V)] < /2

Essentially, the first two conditions imply that the rows of U and V are poorly correlated with the
standard basis vectors when p is small. Taken together, the three items in the incoherence condition ensure
that the singular vectors of L are not too sparse.

It is also necessary to assume that the sparsity pattern of S is not too structured. To see why, consider
the decomposition of A into a low-rank component L and a sparse component S. If S is a sparse matrix
consisting of a column whose entries are identical in magnitude and opposite in sign to the corresponding
column in L, then we face another identifiability issue. To ensure that this does not occur, we assume that

the sparsity pattern of S is distributed uniformly over sets of cardinality p, where p is the number of nonzeros
in S.

2.2 Theoretical guarantees

Under the above assumptions on L and .S, a guarantee on the exact recovery of L and S can be stated. We
provide the formal result for square matrices as follows:

Theorem 1 (Candes et al [2]). Let A = L+S. Suppose that L € R™*™ is u incoherent and fix any M € R™*™
whose entries have values £1. Now, suppose the index support set  of S is uniformly distributed over all
sets of cardinality p, where p = nnz(S), and, furthermore, suppose sign(S;;) = M;; for all i,5 € Q. Then,
there erists a constant c¢ such that the following holds with probability at least 1 — en=10. When A = 1/\/n,
the minimizers L,S of (P1) are exact, i.e. L = L and S = S, provided that rank(L) < c¢ynu~"(log(n)) =2
and p < con?, where c1,co are constants.

The proof of this result is lengthy and beyond the scope of this course. It relies on the formulation of a
dual problem for which estimates can be obtained. For those who are interested, see [2]. Remarkably, the
requirement on the low-rank component L is mild - the rank can scale linearly (apart from a logarithmic
factor) with the dimension n of A. Note that the constant ¢ will depend on the constants ¢; and co.

As a final note, we mention that the PCP optimization problem may be solved using a variety of ap-
proaches. Several efficient algorithms have been derived from the classical augmented Lagrangian methods
(ALM). See [1] for a comprehensive survey and performance comparisons.

3 Stable Principle Component Pursuit

Classical principle component analysis (PCA) seeks a low rank decomposition of a matrix A € R"*™ whose
entries have been corrupted by small levels of noise. Mathematically, the noise takes the form of a matrix
with very small i.i.d. Gaussian entries. PCA is widely used in statistical data analysis and dimensionality
reduction. However, it is fragile with respect to larger noise levels, even if only a few data points have been



severely corrupted. The principle component pursuit (PCP) formulation described in Section 2 provides a
scalable method for recovering the low rank decomposition of A in the presence of highly corrupted data,
provided that the corrupted data makes up a small fraction of the total data set.

In real-world applications, such as background/foreground subtraction, there is often a mixture of low-
level noise spread across the data set and significant corruption supported on a small subset of the data. In
2010, Zhou et al proposed a stable principle component pursuit (SPCP) formulation which can be viewed
as a stabilization of PCA to significant data corruption or as a stabilization of PCP to persistant low-level
noise [8].

Suppose that A € R™*™ now has the decomposition A = L + S + Z where L and S are the same as in
Section two (low rank and sparse, respectively), and Z is a ‘noise term’ satisfying || Z||r < ¢ for some 6 > 0.
To recover L and S, Zhou et al form a relaxed version of (P1),

(P2) minimize [|L]. + AllS]l;
subject to ||[A— L — S| <.
An anologue of Theorem 1 can be established in this regime, and is formally given by the following:

Theorem 2 (Zhou et al [8]). Let A =L+ S+ Z, with L, S satisfying the hypotheses of Theorem 1, and
|Z|lF < 6 for some § > 0. If the numerical constants c1, c2 from Theorem 1 are sufficiently small then, with
high probability in the support of S, the solution (L,S) to (P2) satisfies

IL = L|% + 1S - S|I% < Cn?6?,
where C 1s a numerical constant.

The SPCS optimization problem in (P2) can be solved efficiently using convex optimization techniques
and is not much more expensive than the solution of (P1) [8].
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