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1 Recap and Introduction

Basis pursuit was the method of recovering the sparsest solution to an underdetermined
linear system i.e.

minimize
x

∥∥x∥∥
1

subject to
∥∥Ax− b∥∥ < ε

Compressed sensing is related to basis pursuit, but stems from a different context, in which
there is some underlying signal or function f ∈ Rn that we cannot observe. What we can
observe is some set of linear observations

{
yi | yi = ψT

i f

}m

i=1

(1)

with ψi ∈ Rn. Compressed sensing asks if there is some minimal number set of observations
that may be made i.e. gives bounds on the size ofm. Let Ψ =

[
ψ1 ψ2 . . . ψm

]
∈ Rn×m.

If m = n, we can set up the system of equations

ΨT f = y (2)

with

Ψ =


ΨT

1

ΨT
2
...

ΨT
m

 y =


y1
y2
...
ym


If Ψ is invertible, the solution is trivial (given by inverting Ψ). However, we are interested
in some m < n such that exact recovery is still possible. For general problems, this is not
possible; we are interested on problems with a bit more structure to them.
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2 Mutual Coherence

To be more precise, we assume that f is data-sparse in some basis Φ:

f = Φx

where Φ ∈ Rn×n is assumed to be orthogonal and xinRn is sparse. This basis Φ may be
derived from some physical problem or model.

Then expanding f into (2), we observe that this is equivalent to solving

ΨTΦx = y (3)

However, if Ψ is not invertible (the case when m < n), we are interested in when the basis
pursuit-esque formulation where

A = ΨTΦ

and we would like to solve the optimization problem

minimize
z

∥∥z∥∥
1

subject to Az = y

Note however that we are interested in exact solutions and not approximate solutions. To
simplify things, we make the additional assumption that the columns of Ψ are sampled
uniformly at random from an larger orthogonal matrix Ψ̄ ∈ Rn×n

That is,
A = (Ψ̄R)TΦ

where R ∈ Rn×m is a sampling matrix that picks out columns of Ψ̄

Before we define Mutual Coherence, we first give a toy example to illustrate why Mutual
Coherence is important.

2.1 Toy Example

Assume that Ψ̄ = Φ = F where F is the n × n Discrete Fourier Transform Matrix. Let
x = e1, the unit vector associated with the first coordinate. Then regardless of which R
we pick, we note that our samples

y = ΨTΦe1 (4)

Will be the zero vector unless Ψ contains the first column of F . This is in some senses,
the worst case scenario; we need m = n in order to guarantee that we can extract e1.
Conversely, if m = n− 1, we have a very high probability of getting no information from
our linear measurements y
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2.2 Mutual Coherence

Keeping the toy example in mind, Mutual Coherence is defined as

µ(Ψ̄,Φ) =
√
n max

i,j
|ψT

i φj | (5)

Where φj is the j-th column of the matrix Φ. The way µ is defined here is slightly different
from the way it might be defined in basis pursuit. µ here ranges between 1 and

√
n (with

1 representing the lowest possible score and
√
n representing the highest possible score).

But other than the fact that µ is scaled up by
√
n, there is no difference in its meaning;

µ represents how “different” two bases are. Following this logic, low mutual incoherence
between two bases indicates guarantees that any vector sparse in one basis cannot be be
sparse in the other; this is a critical property to have, as going back to the toy example,
we see that having a vector be sparse in both bases leads to sensing problems.

Theorem 2.1 Given f ∈ Rn, x ∈ Rn, Φ ∈ Rn×n, and Ψ̄ ∈ Rn×n such that

f = Φx

with Ψ̄ and Φ orthogonal, and x k-sparse (having only k nonzero entries), select m columns
of Ψ̄ uniformly at random and put in Ψ. Then if

m ≥ c µ(Ψ̄,Φ)2 k log(n)

for some constant c, the solution x̂ to the optimization problem

minimize
z

∥∥z∥∥
1

subject to ΨTΦz = y

is exact with high probability.

Now, in both exact and approximate sparse recovery cases, we want to find some structures
of A to give provable guarantees and bounds for the effect of our sparse recovery. Thus
we define Restricted Isometry Property (RIP) as follows:

Definition. Restricted Isometry Property (RIP) is defined as: For k = 1, 2, ..., define
δk (a constant) as the smallest number such that

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22

for all k-sparse x. Then we say the matrix A satisfies k-Restricted Isometry Property with
restricted isometry constant δk.

For a matrix A that satisfies the RIP, any subset of k columns of A are “well-behaved”, i.e.
A is guaranteed to project any vector x with corresponding nonzero pattern to another
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vector that has 2-norm close to x. A has the RIP if δ1, δ2, · · · , δ2k are “small”, which leads
to the alternative form of RIP:

δk = maxcard(S)≤s||A∗
SAS − I||2

should be small, in which the 2-norm is the spectral norm.

Let’s say we want to recover a k-sparse signal and δ2k is sufficiently < 1. We have an
equivalent form of RIP being (1− δ2k)||x1− x2||22 ≤ ||Ax1−Ax2||2 ≤ (1 + δ2k)||x1− x2||22.
Here 2k instead of k exists because we can only guarantee x1 − x2 to be 2k-sparse.

Theorem 2.2 Assume δ2k <
√

2− 1, then x̂, the solution to

minimize
z

∥∥z∥∥
1

subject to Az = y

obeys ||x̂ − x||2 ≤ c||x − xk||1/
√
k and ||x̂ − x||1 ≤ c||x − xk||1, where y = Ax and xk is

the best k-sparse approximation of x.

Note: x is not necessarily sparse here.

Now, suppose y = Ax+ g, in which g is noise and ||g||2 ≤ ε, and let x̂ solve

minimize
z

∥∥z∥∥
1

subject to ||Az − y||2 ≤ ε

which is noise-tolerant instead of the exact case in the above theorem.

Theorem 2.3 Assume δ2k ≤
√

2− 1, then x̂ satisfies

||x̂− x||2 ≤ c0||x− xk||1/
√
k + c1ε

for constants c0 and c1.

For example, if δ2k <
1
4 , then c0 ≤ 5.5, c1 ≤ 6.

Some more conclusions on the structure of A:

What general classes of matrices A satisfy the RIP? As it turns out, if random matrices
do the job. To be more precise, we want an A with m close to k satisfying the RIP. In
the cases where either A ∈ Rm×n with i.i.d. normal mean and variance 1

m entries, or
A ∈ Rm×n has each column sampled uniformly at random on the unit sphere in Rm, A
obeys the RIP for δ2k (<

√
2− 1) with high probability if m ≥ cklog(nk ).
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In the case A = RΨ̄TΦ, in which R is a random subsampling matrix, it is sufficient to
have m ≥ k(logn)4 and get the RIP with high probability for δ2k.

If A = GΦ with G being an m × n random matrix as before, and Φ being a set of fixed
orthogonal bases, A obeys the RIP with high probability if m ≥ cklog(nk ).

3 Supplementary Information: Application of Compressed
Sensing to MRI Imaging

Compressed sensing has found innumerable applications in imaging, in particular medical
imaging, and seismic imaging, where the cost of measurement is high, but the data can
usually be represented in a sparse format. Further, it has found applications in biological
sensing, radar systems, communication networks, and many more [1].
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Figure 1: Shepp-Logan phantom (left), and the magnitude of its 2D discrete-cosine trans-
form coefficients (right)

[2] used compressed sensing to accelerate magnetic resonance imaging (MRI) by massively
under-sampling the Fourier domain. The paper shows that MRI images are sparse in
many domains, including DCT, wavelet, and spatial finite-difference domains. Figure 1
demonstrates this: The left side of figure 1 the Shepp-Logan phantom, which is a schematic
of the human brain used to compare medical imaging algorithms. The right image shows
the magnitudes of the 2D discrete cosine transform coefficients. Evidently, the image is
extremely sparse in this domain, whereas there are large regions with significant intensities
in the image domain. Further, several decisions have to be made to apply compressed
sensing in practice.

For example, the paper discusses how to incorporate prior knowledge of the sparsity pat-
tern into a compressed sensing algorithm. In practice, many signals have large Fourier
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coefficients for small frequencies, while also a few critically important high frequency com-
ponents. Variable density sampling incorporates this knowledge, by under-sampling the
frequency domain less for small frequencies, and more for high frequencies. The paper
shows that this method achieves superior performance in practice, when the frequencies
are sampled according to a power law.

Further, there are multiple ways of taking a three dimensional MRI image: by subse-
quently scanning 2D slices, or by a pure 3D scan. The authors point out that randomly
sub-sampling 3D space, instead of subsequent 2D images, reveals more of the image re-
dundancy, capturing most of the advantage of compressed sensing.

Lastly, it is intriguing that the authors propose fixing a sampling pattern after finding one
with good image reconstruction properties, as measured on a few sample images. This
makes the algorithm deterministic and sacrifices the theoretical, probabilistic guarantees
of the under-sampling scheme. The practical justification of this is that one expects
the images of a particular body region to be sufficiently similar, in order for the good
reconstruction behavior to apply to MRI scans of different people.
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