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1 Basis Pursuit De-noising and LASSO

1.1 Introduction

Both LASSO (least absolute shrinkage and selection operator) and BPDN (Basis
Pursuit De-noising) are methods which deal with the following problem. Let

A = [I F ], (1)

where I is the identity and F is the Fourier transform matrix. If b = Ax, where
x is sparse, how do we recover this sparse solution, given the observations b and
that A is over-complete?

It turns out that solving
min
x
‖x‖1

s.t. Ax = b
(2)

can recover the sparse x. This is the basis of both LASSO and BPDN, which are
similar methods, but were developed by different research communities. LASSO
was developed by the statistics community, while BPDN was developed by the
signal processing community.

In real-world applications, the observations b might be noisy. Therefore, it
would be better to solve

min
x
‖x‖1

s.t. ‖Ax− b‖2 ≤ ε
(3)

Note that this problem is equivalent to

min
x
‖Ax− b‖2 + λ‖x‖1 (4)

for some choice of λ. A number of optimization packages have been developed
to deal with these types of problems. For example:

1. ASP by Friedlander and Saunders

2. CVX
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http://web.stanford.edu/group/SOL/software/asp/
 http://cvxr.com/cvx/ 
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Figure 1: Sparse x (left), and Ax (right)

1.2 Demonstration and Discussion of BPDN

In the following, we will demonstrate the basis pursuit algorithm. The Matlab
code for this demonstration, which uses ASP, can be found here.

Without noise perfect recovery is possible. Indeed, the left side of 1 shows
a sparse x in the basis A = [I, T ], where T is the discrete cosine transform.
The right side of 1 shows Ax, clearly not a sparse signal. However, solving (2)
recovers x to arbitrary precision, depending on the stopping condition of the
optimization method.

As the noise increases, the corresponding ε in the constraint of (4) has to be
adjusted. If ε is below the noise level, the resulting x will be less sparse, as a
tight fit to the data has to be enforced. If we adjust ε, the solution will become
sparse again, though small coefficients might get pushed to zero. This is because
the error incurred by missing a small coefficient is likely to be insignificant to
the fit for a large ε. Intriguingly, the recovery of x is still successful up to the
noise level.

1.3 Comparison of BPDN to Competing Methods

[1] compares basis pursuit to other decomposition methods into over-complete
bases. A notable one is the method of frames (MOF). This method relies on
solving

min
x
‖x‖2

s.t. Ax = b.
(5)

The advantage of this method is that its solution is available in closed form.
That is, x = AT (AAT )−1b. However, the solution to (5) is in general not
sparse, if A is over-complete.

Matching pursuit (MP), another method, works by greedily adding non-zero
coefficients to x one at a time, based on which basis vector is most correlated
with the current residual. However, this method is also not guaranteed to
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http://web.stanford.edu/group/SOL/software/asp/
https://www.cs.cornell.edu/courses/cs6220/2017fa/BPDN_demo.m


be sparsity preserving, if A is not orthogonal, which is the case for any over-
complete basis. If the columns of A are in fact orthogonal, this algorithm is
also called orthogonal matching pursuit (OMP). OMP can be shown to recover
the sparsity pattern of a k-sparse x if the mutual incoherence µ of A is smaller
than 1

2k−1 (see [2]). Recall that the mutual incoherence µ of A is µ(A) =

maxi 6=j(A·i)
TA·j .

Best orthogonal basis (BOB), attempts to adaptively select an orthogonal
basis out of an over-complete basis, in order to represent the signal. This works
well for signals which are generated by orthogonal basis functions. However, it
does not yield sparse representations for signals which are generated by non-
orthogonal elements of the basis at hand.

In summary, BPDN delivers superior performance with regards to recovering
sparse signals for a wide class of problems, compared to the other methods
outlined above.

1.4 BPDN and Quadratic Programming

Consider y = Ax + σz, where z ∼ N (0, 1). If we relax min ‖x‖1 s.t. Ax = b
to min 1

2‖Ax − b‖
2
2 + λ‖x‖1, this can we written as a quadratic program. In

particular,

min
u,v,r

λ1T (u+ v) +
1

2
rT r

s.t.
[
A −A

] [u
v

]
+ r = b

u, v ≥ 0

(6)

Now suppose that there exists a feasible x0 of the BPDN problem

min
u,v,r
‖x‖1

s.t. ‖Ax− b‖2 ≤ ε
(7)

such that ‖x0‖0 ≤ 1
4 (1 + 1

µ(A) ). Then x̂, the solution to (6) satisfies

‖x̂− x0‖22 ≤
4ε2

1− µ(A)(4‖x‖0 − 1)
. (8)

2 Next Lecture: Compressed Sensing

Let f be a signal that is sparse in some basis. That is,

f = [I T]x, (9)

for some sparse x, where T is the discrete cosine transform. Compressed sensing
deals with the problem of recovering f with some small number of measurements
yTi f for i = 1, 2, ...,m. It turns out, this is feasible! But given f , with sparse x

s.t. f = Φx, how many linear measurement yi (f̂i = yTi f) do we need to exactly
recover f? This depends on 2 key things.
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1. Sparsity of x

2. Incoherence between y and Φ.

To be continued on November 2nd.
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