
CS 6220, Fall 2017 October 31, 2017

Lecture 21

Lecturer: Anil Damle Scribes: Louise Lee (zl245), Qinru Shi (qs63), Scott Wu (ssw74)

1 Introduction

In the previous lectures, we learnt about sparse recovery and compressive sensing. Today, we will prove via
demo that sparse recovery and compressive sensing work in section 2, and then talk about working with
noisy data in section 3.

2 MATLAB Demos

The demos will use ASP, a package that implements BPDN/LASSO. Other packages that implement
BPDN/LASSO include SPGL1 and L1 Homotopy. CVX is another package that can be easily used to
implement BPDN/LASSO.

The code used for the in class demo may be found here.

2.1 Demo 1: 1D Sparse Recovery without Noise

In order to demonstrate the effectiveness of sparse recovery, we will try to solve the following problem:
Assume we have a sparse vector x and a signal b generated from x, can we recover x from b? For example,
let F be the DFT matrix, and let

A =
[
I F

]
and b = Ax.

In this framework, we can solve the following system:

minx ‖x‖1 , s.t. Ax = b.

We denote the calculated solution as x̂. Figure 1 shows the comparison between the true solution x and
calculate solution x̂ in one experiment. We can see that x and x̂ are very close. The error only depends on
the precision of optimization.

>> norm(x-xhat)

ans =

6.9804e-08

0 200 400 600 800 1000 1200
−4

−3

−2

−1

0

1

2

3

4

5

(a) The true solution x

0 200 400 600 800 1000 1200
−4

−3

−2

−1

0

1

2

3

4

5

(b) The calculated solution x̂

Figure 1: Comparison of the true solution x and result x̂

Furthermore, we can verify that the calculated solution has the same sparsity pattern as the true solution:

1

http://web.stanford.edu/group/SOL/software/asp/
http://www.cs.ubc.ca/~mpf/spgl1/
http://www.ece.ucr.edu/~sasif/homotopy/index.html
http://cvxr.com/cvx/
https://www.cs.cornell.edu/courses/cs6220/2017fa/BPDN_demo.m

>> setdiff(find(x~=0), find(xhat~=0))

ans =

Empty matrix: 0-by-1

Note that we want to keep all entries of b as real numbers. This will require a careful construction of x.
To simplify matters in our demo, we replaced DFT with DCT (Discrete Cosine Transform) so that b will
always be real.

Another intuitive idea for solving sparse recovery problems is to approximate x with α = D−1b, where
D is the DCT matrix. Figure 2 shows that the idea does not work well in practice, since the inverse DCT
of x is not sparse.

0 100 200 300 400 500 600
−5

−4

−3

−2

−1

0

1

2

3

4

(a) The original signal b

0 100 200 300 400 500 600
−2

−1

0

1

2

3

4

(b) α = D−1b

Figure 2: The original signal b and α = D−1b

2.2 Demo 2: 1D Sparse Recovery with Noise

For the second demo, we will consider the same problem as in demo 1, but this time with noise. Assume

A =
[
I D

]
and b = Ax+ σz,

where σz denotes Gaussian random noise scaled by a constant. Now, instead of solving

minx ‖x‖1 , s.t. Ax = b,

we change our constraint and solve

minx ‖x‖1 , s.t. ‖Ax− b‖2 ≤ ε,

We again denote the calculated solution as x̂. Figure 2 shows the comparison between the true solution
x and calculate solution x̂ in one experiment. Note that we used the same x as in demo 1. This time, the
error is larger due to the noise, but x̂ is still close enough to the true solution.

>> norm(x-xhat)

ans =

0.2416

We can still verify that x̂ has the same sparsity pattern as x.

2

0 200 400 600 800 1000 1200
−4

−3

−2

−1

0

1

2

3

4

5

(a) The true solution x

0 200 400 600 800 1000 1200
−4

−3

−2

−1

0

1

2

3

4

5

(b) The calculated solution x̂

Figure 3: Comparison of the true solution x and result x̂

>> setdiff(find(x~=0), find(xhat~=0))

ans =

Empty matrix: 0-by-1

The code solves the problem
‖Ax− b‖2 + λ ‖x‖1

where λ needs to depend on the noise level in order to retrieve the sparse solution. This is discussed in
more detail in section 3.1.

2.3 Demo 3: 1D Compressed Sensing with Redundancy

Another question that can be asked is the following: Given a signal f that is sparse in some basis, for
example

f =
[
I D

]
x

does one need to know all of f to solve for x?
So far, we have been solving

minx ‖x‖1 s.t.Ax = b

Can we recover f with a small number of linear measurements of the form yTi f for i = 1, 2, . . .m? The
answer is usually ”no”. However, if x is sparse, we can choose some small number of yi to recover f .

For this demo, we will use random mixings of sparse b. Despite not having all parts of b, can we still
recover x? We mix b by multiplying it with a 63-by-512 matrix G with normal random entries. G can
therefore be seen as a downsampling and randomising operator. Notably, G is not invertible.

The following shows that the structure of Gb is very dissimilar to that of b, and has far fewer samples
compared to b.

We then run BPDN on GA and Gb. The following stem plot shows that the solution is very close to the
true solution:

We can verify that the solution recovers all the zeros of the true solution:

>> setdiff(find(x~=0), find(xhat~=0))

ans =

Empty matrix: 0-by-1

We can also check that the coefficients of x̂ are very close to x:

3

0 100 200 300 400 500 600

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(a) The original signal b

0 10 20 30 40 50 60 70

-4

-3

-2

-1

0

1

2

3

4

(b) The mixed signal Gb

Figure 4: Comparison of b and the mixed signal Gb

0 200 400 600 800 1000 1200

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(a) The true solution x

0 200 400 600 800 1000 1200

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(b) The calculated solution (̂x)

Figure 5: Comparison of the true solution x and result x̂

>> norm(x-xhat)

ans =

5.6493e-10

This demo shows the core idea behind compressive sensing: one does not need as many samples as one
thinks one needs to recover the signal. This holds when the signal has a sparse representation that we can
leverage. For example, in this demo the signal has a sparse representation in time space and DCT-space.

2.4 Demo 4: 1D Compressed Sensing with Incoherent Matrix

The Nyquist-Shannon sampling theorem [1] tells us that we need to sample in time space at every 1/(2b)
seconds for a signal consisting of frequencies that are at most b Hz. However, if b is sparse, we do not need
that many samples.

In this demo, f =
[
D
]
x. We pick 32 random entries of b and rearrange them randomly using the matrix

DS. We then take b2 = DS ∗ b.
We then run BPDN on DS ∗ A and b2. The following stem plot shows that the solution is very close to

the true solution:
We can verify that the solution recovers all the zeros of the true solution:

>> setdiff(find(x~=0), find(xhat~=0))

ans =

Empty matrix: 0-by-1

We can also check that the coefficients of x̂ are very close to x:

4

0 100 200 300 400 500 600

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(a) The original signal b

0 5 10 15 20 25 30 35

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

(b) The randomly sampled signal b2

Figure 6: Comparison of b and randomly sampled signal b2

0 100 200 300 400 500 600

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(a) The true solution x

0 100 200 300 400 500 600

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(b) The calculated solution (̂x)

Figure 7: Comparison of the true solution x and result x̂

>> norm(x-xhat)

ans =

1.2413e-16

Even given just 32 samples from b, we can exactly recover all the coefficients. This is because the matrix
that b is multiplied with is incoherent with the DCT matrix.

If we want to reconstruct b, we can take b̂ = A ∗ x̂. A quick check shows that b̂ is very close to b:

>> norm(A*xhat - b)

ans =

1.8127e-16

Therefore, the important thing is to not sample based on the size of the representation, but on the
information content of the matrices. Because of this, one needs to know how the subsampling is done, for
example what G is in demo 3 and DS is in demo 4.

Another question that might arise in practical usage is how does one know how sparse x is going to be
in order to tweak the algorithm. In practice, compressed sensing finds application in areas such as imaging
which have signals of finite energy. Therefore, one can assert that one has a sparse representation in an
appropriate basis, such as a wavelet basis.

5

3 Working with Noisy Data

3.1 Quadratic Programming

In the previous lecture, we were able to write the solution to the sparse optimization problem Ax = b as a
linear program. We were trying to solve

min ‖x‖1 , s.t. Ax− b = 0

represented this as the following linear program,

min[
u v

]T
∈R2n

1T
[
u
v

]
, s.t.

[
A −A

] [u
V

]
= b,where u, v ≥ 0

and solved it using simplex or interior point methods.
If our output b is noisy, our problem can no longer be solved by a linear program.

min ‖x‖1 , s.t. Ax+ σz − y = 0,

where σz denotes Gaussian random noise magnified by a constant

If we relax the constraint to

min
1

2
‖Ax− b‖22 + λ ‖x‖1

then we can rewrite this as a quadratic program

min
u,v,r

λ1T (u+ v) +
1

2
rT r,

such that
[
A −A

] [u
V

]
+ r = b,

where u, v ≥ 0, residual r = ‖Ax− b‖22

The variable λ is used to adjust the objective function between sparsity and accuracy. A smaller value of
λ will decrease the influence of ‖x‖1, thus generating a more accurate solution. A larger value will generate
a more sparse solution.

Problems in this form are called Basis Pursuit Denoising (BPDN), and are a class of quadratic programs.
As with linear programs, there exist solvers for BPDN and quadratic programs in general using interior point
and conjugate gradient methods.

3.2 Visual Representation

In the Ax = b problem, we visualized the optimal sparse solution by growing the `1 norm until it intersected
the line representing the solution. In a noisy scenario, we can instead visualize level sets of the solution
at various ε. As we increase ε and expand the level sets, there might exist an x within the level set with
minimum `1 norm.

6

However, this also means there are more cases with weaker solutions. For example, in the 2D case, if the
level set happens to be oblique, then either the sparse solution is not accurate, or accurate solution is not
sparse.

Finally, if we force epsilon to be too small, then there may be no good sparse solution at all.

7

3.3 Accuracy

Another way of representing BPDN is

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε

If there exists a feasible solution x0 that satisfies ‖Ax− 0− b‖2 ≤ ε and is sparse enough to satisfy

‖x0‖0 ≤
1

4

(
1 +

1

µ(A)

)
where µ(A) is the mutual coherence matrix A

µ(A) = max
1≤i,j≤n,i3j

|ai · aj |
‖ai‖ ‖aj‖

then we can bound the accuracy of the recovered solutions.

‖x̂− x0‖22 ≤
4ε2

1− µ(A)(4 ‖x0‖0 − 1)

In the absence of noise, we said that if there exists a sparse enough solution to Ax = b, then we will be
able to find it. Now if we have tighter bound on the sparsity, and it instead guarantees that the recovered
solution will be within a certain distance from the true solution.

8

References

[1] Claude Elwood Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
1949.

9

	Introduction
	MATLAB Demos
	Demo 1: 1D Sparse Recovery without Noise
	Demo 2: 1D Sparse Recovery with Noise
	Demo 3: 1D Compressed Sensing with Redundancy
	Demo 4: 1D Compressed Sensing with Incoherent Matrix

	Working with Noisy Data
	Quadratic Programming
	Visual Representation
	Accuracy

