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1 Introduction

Suppose we have some A ∈ Rm×n(m < n), there are many solutions to Ax = b
and we want to pick one of them. There are many ways to do this: minimize
‖x‖2, minimize ‖x‖1 or minimize ‖x‖0 to get the sparsest solution.

The following is an heuristic idea about sparsity in signal processing due
to the Heisenberg’s uncertainty principle. Suppose that we have two represen-
tations of a signal. One is in time space as f(x) and the other is its Fourier

transform in frequency space as f̂(ω). Assume that ‖f‖2 = ‖f̂‖2 = 1, then we
have [4]. ∫ ∞

−∞
x2|f(x)|2dx

∫ ∞
−∞

ω2|f̂(ω)|2dω ≥ 1

2

There is also a discrete version of Uncertainty principle, according to [2]. Sup-
pose that (xt)

N−1
t=0 is a sequence of length N and let (x̂w)N−1

w=0 be its discrete
Fourier transform. Then we will have

‖(xt)‖0 · ‖(x̂w)‖0 ≥ N

which in some sense shows that the two reprsentations cannot be sparse both.

2 Theorems on Sparsity

2.1 Example: A = [Φ Ψ]

Consider A = [Φ Ψ] where Φ, Ψ are unitary. Given b, ∃α, β s.t. b = Φα, b = Ψβ.
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Definition 1 For arbitrary Φ,Ψ with columns φi, ψi, the mutual coherence of
Φ,Ψ is

µ(A) = max
1≤i,j≤m

‖φ∗iψj‖(A = [Φ Ψ]) = max absolute entry of φTψ

The following is a theorem about the relation of sparsity and coherence. The
proof basically follows [3] and readers can find more details there.

Theorem 2 For arbitrary unitary Φ,Ψ with µ(A) and arbitrary b 6= 0 ∈ Rm,
if we have some vector α, β s.t. b = Φα, b = Ψβ, then

‖α‖0 + ‖β‖0 ≥
2

µ(A)

Proof. Without loss of generality, we can assume that ‖b‖2 = 1. Since
b = Φα, b = Ψβ and bT b = 1 we have

1 = bT b = αΦTΨβ =

n∑
i=1

n∑
j=1

αiβjφ
T
i ψj ≤ µ(A)

n∑
i=1

n∑
j=1

|αi||βj |

which leads to
1 ≤ µ(A) · ‖α‖1‖β‖1

Consider the following maximizing problem

max ‖α‖1
s.t. ‖α‖22 = 1

‖α‖0 = N

We can assume that all the non-zero entries of α are its first N ones and intro-
duce Lagrange multipliers as follows

L(α) =

N∑
i=1

αi + λ
(

1−
N∑
i=1

α2
i

)
Let the derivative equals to zero we have

1− 2λαi = 0, i = 1, · · · , N

which leads to the solution

αi =
1

2λ
, i = 1, · · · , N, λ =

√
N

2

Therefore the optimal solution is

αi =
1√
N
, i = 1, · · · , N, αi = 0, i ≥ N + 1

and the optimal value is
√
‖α‖0 By plugging into the former result and using

basic inequality we have

1

µ(A)
≤ ·‖α‖1‖β‖1 ≤

√
‖α‖0

√
‖β‖0 ≤

√
‖α‖0 +

√
‖β‖0

2
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which is exactly the claim.
If there exists two different solutions x1 6= x2 to the problem

[Φ Ψ]x = b

we know that e = x1 − x2 is in the null space of A. Let

e =

[
eΦ

eΨ

]
where eΦ, eΨ ∈ Rm. Then we can obtain ΦeΦ = −ΨeΨ = y 6= 0, since both Φ
and Ψ are supposed to be unitary and if y = 0, then we have eΦ = eΨ = 0,
which means that x1 = x2.

Then we can apply Theorem 2 to A and y and obtain

‖e‖0 = ‖eΦ‖0 + ‖eΨ‖0 ≥
2

µ(A)

Therefore we can estimate the sparsity on x1 and x2 as

‖x1‖0 + ‖x2‖0 ≥ ‖e‖0 ≥
2

µ(A)

which give rise to the following theorem.

Theorem 3 If a solution to [Φ Ψ]x = b has fewer than 1
µ(A) non-zero entries,

then it is the sparsest solution and in fact is unique.

Proof. Suppose x∗ is a solution to [Φ Ψ]x = b with ‖x∗‖0 < 1
µ(A) , then we have

for any solution x to this problem

‖x‖0 ≥
2

µ(A)
− ‖x∗‖0 >

1

µ(A)
> ‖x∗‖0

which means that x∗ is the sparsest solution.

2.2 General Matrix A

Key idea: The “ideal” property of A is for the following to be large:

The smallest number of linearly dependent columns

Consider the following example. If all the columns of A are generated by two
linearly independent vectors, and b can also be expressed as linear combinations
of these two vectors (guarantees solutions exist), i.e.

[φ ψ (λφ+ µψ) · · · ]x = [aφ+ bψ]

then we can choose any two coordinates of x to be non-zero without influence
the sparsity of x. This provides several sparsest solutions, which is what we do
not want.

Definition 4 The mutual coherence of a general m× n matrix A is

µ(A) = max
1≤i 6=j≤n

|a∗i aj |
‖ai‖2‖aj‖2
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Theorem 5 For Ax = b with A of size m×n and A has unit 2-norm columns,
if a solution x exists with ||x||0 ≤ 1

2 (1 + 1
µ(A) ), it is unique and solves both of

the following problems:
min ||x||0
s.t. Ax = b

and
min ||x||1
s.t. Ax = b

Proof. Here we present a sketch of the proof. For the detailed and complete
proof, refer to [3].
From the previous theorem, we know x is the unique solution to the former
problem, and we let S = supp(x). Now suppose y is the optimizer for the latter
problem and is different from x, and let e = y − x. Since x and y are both
solutions to the problem Ax = b we know Ae = 0. We also know from the
optimality that ||e||1 ≤ 2||eS ||1. Besides, we can also derive ATAe = 0 and
from this we know ∀j, |ej | ≤ (1 + µ(A))−1µ(A)||e||1. These two inequalities we
have contradict our assumption.

From this theorem, we know that to find the desired solution x, we can solve
the problem with 1-norm. There are several ways to solve this, and one way is
to write it as a linear program (LP). Normally, to solve such a linear program,
we would like to have x ≥ 0 but we do not have such a constraint on x so we
consider making two non-negative vectors the same dimension as x (denoting
the positive and -negative parts) and rewrite the problem:
Let u ∈ Rn, v ∈ Rn, u ≥ 0, v ≥ 0 and

w =

[
u
v

]
(1)

min 1Tw

s.t. [A −A]w = b

w ≥ 0

Two ways are commonly used to solve an LP problem, simplex method and
interior point method. Systems of equations or inequalities of an LP problem
often define a n-dimensional polytope and these two methods use two different
ideas of finding solutions on the polytope[1].
Simplex method starts at a feasible vertex and move along the edges of the poly-
tope to another vertex until it reaches the optimum solution. We can visualize
it in a 2D graph:
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Interior point method, comparatively, is a polynomial-time efficient method
to solve an LP problem. It usually achieves optimization by going through the
middle of the polytope rather than around the surface like the simplex method.
We can also visualize it in a 2D graph:

3 Denoising and LASSO

Generally, in practical problems, we would not have a simple and pretty b. In-
stead, we will often encounter y = b + σz where σ is the noise level and z is
a random number from Gaussian distribution with mean 0 and variance 1. In
this case, solving Ax = y for x might be a bad practice.
Our Basis Pursuit then becomes a Basis Pursuit Denoising (BPDN), an op-
timization problem: minx

1
2 ||Ax − y||

2
2 + λ||x||1, where λ is a parameter that

controls the trade-off between sparsity and reconstruction fidelity.
We can tell that this optimization is sort of equivalently to least absolute shrink-
age and selection operator (LASSO),a regression analysis method that performs
both variable selection and regularization in order to enhance the prediction ac-
curacy and interpretability of the statistical model it produces, which solves:

min 1
2 |Ax− b||

2
2

s.t. ||x||1 ≤ t

We will cover more about LASSO and BPDN in future lectures.
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