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1 Introduction

It is without a doubt, one crucial piece of the toolbox of numerical methods. The FFT or Fast Fourier
Transform is a fast algorithm used to compute the Discrete Fourier Transform. It is one of the most common
discrete transforms used today.

Note: While many other algorithms used throughout this course can be coded up for use in other
projects, you shouldn’t attempt to do this with the FFT. The FFT has been fine tuned over the past 20 to
30 years to include various optimizations and to account for different edge cases. Many different libraries for
the FFT exist, but a good common library to use would be the FFTW (Fastest Fourier Transform in the
West).

1.1 Fourier Transform

Given an integrable complex-valued function f : R→ C, one can define its Fourier Transform as a function
given by

f̂(x) =

∫ ∞
∞

f(t)e−2πixtdt.

This transformation is a bijection, and we get get his inverse is

f(t) =

∫ ∞
∞

f̂(x)e2πixtdx.

Intuitively, the transform decomposes the function in terms of its frequency domain. We usually think of
it as a signal f(t) as a function that changes over time; however, it is possible to consider any function as
a combination of periodic oscillatory fictions (or frequencies). Thus, it is possible to write a function as an

infinite sum (integral) of periodic functions. With this in mind, each function evaluation f̂(x), can be seen
as the coefficient associated with the oscillatory function e2πixt in the infinite sum.

In many contexts it is easier to consider the function written in the frequency domain. We will see later
some operations, such as convolution, can be simpler to handle in this domain, both from a symbolic, and
a numerical viewpoint. This transform is interesting on its own, and has been studied in depth from a pure
theoretical perspective. However, in these notes we are mainly concern with the numerics involved, that is
why we are mainly going to talk about the discrete version of the transform.

1.2 Discrete Fourier Transform

Assume we are given a signal (either real or complex) of length N , encoded in a vector

x =


x0
x2
...

xn−1

 .
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Figure 1: Periodicity of the function described by x.

We think of this vector as a discrete set of evaluations of the function, i.e. xk = f(tk) for some fix tk.
Notice that this doesn’t define a priori a function with full domain R; however, we are only going to consider
periodic functions, therefore, the vector represents only one period of the function, see Figure ??. We define
its Discrete Fourier transform (DFT) as

x̂k =
1√
N

N−1∑
n=0

xne
−2πikn/N for k = 0, 1, . . . , N − 1

Notice that this is just a discretization of the transform described in the previous section, where our delta
step becomes 1/

√
N .

Remark 1. Here are some caveats to take into account: (1) Since f is periodic you can find in the literature
that k is defined to range in

[
−N−12 , N−12

]
when N odd, and

[
−N2 ,

N
2

]
otherwise. We adopt our notation

for the seek of clarity. (2) We might ignore the constant factor, 1/
√
N , in some of our calculations. but be

warned, it is there.

Just as in the continuous case, with the DFT, we can also reconstruct the original signal using

xj =
1√
N

N−1∑
n=0

x̂k e−2πijn/N .︸ ︷︷ ︸
functions oscillate a freq at ≈k

Thus, it lets us write the function in terms of periodic functions (i.e. the frequency domain). This defines
an N periodic extension of {x}N−1n=0 . Formally

xj+lN =
1√
N

N−1∑
n=0

x̂ke
−2πi(j+lN)n/N =

1√
N

N−1∑
n=0

x̂ke
−2πijn/N e−2πilN/N︸ ︷︷ ︸

=1

= xj .

In the next section we will describe some applications to see why is this transform useful. But for now, let’s
get a grasp on some of the properties of this transform. The fist thing to notice is that the DFT is just
matrix-vector multiplication. Thus, if we define a n× n matrix F with

Fjk =
1√
N
e−2πi(j−1)(k−1)/N

where j, k ∈ {1, . . . , n}. Then, it is possible to describe the Discrete Fourier Transform as x̂ = Fx. In full
generality matrix-vector multiplication has complexity O(n2), for huge signals, this can be too expensive.
But this matrix has a very particular structure, can we take advantage of it to improve this complexity? We
will see in Section 2 that the answer to this question is yes, we can actually reduce it to O(n log(n))!

The paradigm in which many numerical methods use the DFT is the following, assume that the input to
be a signal x,

1. Compute the DFT, x̂ = Fx.
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2. Process your signal in the frequency domain, ŷ = Φ(x̂).

3. Pull it back to the discrete, y = F−1ŷ.

Some methods receive, or return multiple signals, but follow the same idea. Thus, we would like to have a
way to very efficiently apply the inverse F−1 as well. Luckily, applying F is just as simply as applying F−1,
this is formalized in the following Lemma.

Lemma 1. F−1 = F ∗ (Complex conjugate).

Proof. Let F1, . . . , FN denote the columns of the matrix F . Then, the rows of F ∗ are exactly the component-
wise complex-conjugate of F1, . . . , FN , denoted by F ∗1 , . . . , F

∗
N . Then,

(F ∗F )jk = F ∗j Fk =
1

N

N∑
l=1

e2πi(l−1)(j−1)/Ne−2πi(l−1)(k−1)/N

=
1

N

N∑
l=1

e2πi(l−1)(j−k)/N

=
1

N

N∑
l=1

(
e2πi(j−k)/N

)(l−1)
=:

1

N

N∑
l=1

ωl−1jk

=
1

N

{
1−ωNjk
1−ωjk if j 6= k

N otherwise

= δjk.

where δjk is the dirac delta. Note that we can factorize 1 − zN = (1 − z)
∑N−1
i=0 zk, additionally ωjk =

e2πi(j−k)/N is a root of unity, and ω = 1 if, only if, j = k. By combining these facts we get the penultimate
penultimate equality. Thus, F ∗F = I, and the result follows.

1.3 Some applications

Before, we continue to the description of a fast algorithm to compute the DFT, let us review some interesting
applications. As we will see, one of the main perks of working in the frequency domain is that convolutions
become just products, and consequently can be computed fast.

1. Spectral analysis. In signal processing, one is interested in the decomposition (or spectrum) given
by the DFT. A signal can encode an audio file, an image, an MRI, or a text file. Decomposing signals
allows us to understand them as sums of simpler frequency function, and thus their inherit structure.

2. Data compression. We live in a world were tons of information is continuously shared, it is of
fundamental importance to be able to compress it, but how can we do it? Suppose that you decompose
a signal into individual frequencies. Our measurement instruments are always affected by noise, so this
decomposition will very likely include very small coefficients that can be ignore to get a compressed
version the signal. In a some how similar paradigm, one can discard the frequencies that are not
perceptible to the human senses, this is the basic idea of algorithms like JPEG.

3. Polynomial multiplication. Assume you are given two polynomials with real coefficients a(x), b(x) ∈
R[x] with order m, and n respectively, and you’re asked to compute its product. Note that

c(x) := a(x)b(x) =

n+m∑
i=0

 i∑
j=0

aibi−j


︸ ︷︷ ︸

ci:=

xi.
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which is just a convolution of the signal (a0, . . . , an), and (b0, . . . , bn). Hence, it can be efficiently tackle
in the frequency domain.

4. Multiplication of big integers Recall that any integer with n digits can be written as

n−1∑
i=0

di+110i

where di is the ith digit from right to left. Hence, we can associate a polynomial pN (x) =
∑
i di+1x

i to
any integer N . Suppose we want to calculate the product of two giant integer N,M , then, it is faster
to compute the product pN (x)pM (x) using FFT and evaluate it at 10.

5. Stochastic processes. In a discrete random walk, one has a lattice in the Rn (for example Zd), and
a probability distribution Φ that describes the probability of jumping to other points in the lattice. A
natural question is what’s the distribution of the walk after n steps? it turns out that the distribution
is described as the nth convolution of the distribution, Φ∗n, which can be computed very efficiently
once the distribution is written in the frequency domain.

2 The Fast Fourier Transform

In this section we present the a fast algorithm to compute the DFT in O(n log(n)) time. It is easier to
understand this complexity when we consider a power-of-two dimension, we will start by describing this
case, and then we will move to the case where the dimension can be decomposed as product of two integers.

2.1 Cooley-Tukey algorithm (Easy case)

Let’s consider the specific case where N = 2m. The key idea behind it is to use a recursive algorithm to
compute the product. For this we are going to write our length N DFT as two smaller DFTs of length N/2,
and then repeat this process until we hit the FFT of 1 dimensional signals. Let’s start by decomposing the
formula

x̂k =
1√
N

N−1∑
n=0

xne
−2πikn/N

=
1√
N

N/2−1∑
n=0

x2ne
−2πik2n/N +

N/2−1∑
n=0

x2n+1e
−2πik(2n+1)/N


=

1√
N

N/2−1∑
n=0

x2ne
−2πikn/(N/2) + e−2πik/N

N/2−1∑
n=0

x2n+1e
−2πikn/(N/2)

 .

This is almost two DFTs of length N/2, one for the even terms, x̂e and one for the odd terms, x̂o, except
x̂k is length N . By Euler’s formula we know that e−2πia = 1 (a any integer) thus (x̂e)k = (x̂e)k±N/2. Now
we can express x̂k in terms of x̂e and x̂o.

x̂k =

{
(x̂e)k + e−2πik/N (x̂o)k for k = 0, 1, . . . , N/2− 1
(x̂e)k−N/2 + e−2πik/N (x̂o)k−N/2 for k = N/2, N/2 + 1, . . . , N − 1

Again, with Euler’s formula we can simplify this to

x̂k = (x̂e)k + e−2πik/N (x̂o)k for k = 0, 1, . . . , N/2− 1

x̂k+N/2 = (x̂e)k − e−2πik/N (x̂o)k for k = 0, 1, . . . , N/2− 1

Thus, we can express a power-of-two-sized DFT as two power-of-two-sized DFTs of length N/2 if m > 0.
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(b) Length-4 DFT

Figure 2: Computation of power-of-two-sized DFTs

Computation The building block of a power-of-two-sized DFT is a length-2 DFT (aka “butterfly”) shown
in Figure 2(a). Each butterfly needs two complex add/subs and one complex multiply. The multiplication
factor is wk,N = e−2πik/N (aka “twiddle factor”). The next higher-level DFT is length 4 and is composed of
two butterflies (see Figure 2(b)). Since the lengths are powers of two we can express any twiddle factor in
terms of the next higher level of the computation by wk,N = w2k,2N . For a length-N DFT there are logN
levels of N/2 butterflies so the total computation is (N/2) logN complex muls and N logN add/subs. This
is 2N logN real muls and 3N logN real add/subs.

2.2 Non-power-of-two DFT

What if N 6= 2m? Consider the case that the DFT is of composite length N = N1N2 and that at least one
of the factors is small. The small factor is described in the literature as the radix. A composite-length DFT
can be expressed in terms of a DFT of length N1 and a DFT of length N2. Thus, the key idea for solving
this case is that we recursively decompose the DFT until we have only radix DFTs which can be solved with
optimized codes (as large as radix-32 is typical in FFTW [2]).

First, rewrite indices k and n as

k = N1k1 + k2 with k1 = 0, 1, . . . , N2 − 1 and k2 = 0, 1, . . . , N1 − 1

n = N2n1 + n2 with n1 = 0, 1, . . . , N1 − 1 and n2 = 0, 1, . . . , N2 − 1

Then, the composite-length DFT (excluding the constant factor, for brevity) is

x̂N1k1+k2 =

N1−1∑
n1=0

N2−1∑
n2=0

xN2n1+n2e
−2πi(N1k1+k2)(N2n1+n2)/N

=

N1−1∑
n1=0

N2−1∑
n2=0

xN2n1+n2
e−2πiN2n1k2/N e−2πiN1k1N2n1/N︸ ︷︷ ︸

=1

e−2πik2n2/Ne−2πiN1k1n2/N

=

N1−1∑
n1=0


[
N2−1∑
n2=0

xN2n1+n2e
−2πik2n1/N1

]
︸ ︷︷ ︸

DFT of length N1

e−2πik2n2/N

 e−2πik1n2/N2

︸ ︷︷ ︸
DFT of length N2

So, we can write a DFT of length N = N1N2 as N2 DFTs of length N1 and 1 of length N1.
If N has a large prime factor then we can use Rader’s or Bluestein’s algorithm [3, 1]. Both algorithms

rewrite the DFT as a cyclic convolution. The key idea of Bluestein’s algorithm is that the prime-length DFT
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can be replaced by two non-prime-length DFTs. First, we have the fact that

2kn = k2 + n2 − (k − n)2

Then, rewrite the DFT as

x̂k =
1√
N

N−1∑
n=0

xne
−2πikn/N

=
1√
N
e−

πi
N k

2
N−1∑
n=0

xne
−πiN n

2

e
πi
N (k−n)2

︸ ︷︷ ︸
convolution

So, a prime-length DFT can be written as a convolution, which can be performed with a pair of zero-padded
DFTs of length at least 2N − 1. Since the length is unbounded from above we can choose a composite or
power-of-two length.
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