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Sparse Embedding Matrices 
We can use a subspace embedding matrix 𝑆 to estimate the column space of 𝐴 within a given epsilon 
and with high probability. The epsilon restricts the estimated norm of the range of 𝑆𝐴 to the norm 
of the range of 𝐴. This subspace embedding matrix can be applied to algorithms we’ve seen 
previously as a tradeoff between computation and accuracy. 

More precisely, we would like to find a matrix 𝑆 ∈ ℝ𝑡×𝑚 such that ∀𝑦 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 

Eq 1 

(1 − 𝜀)‖𝐴𝑦‖2 ≤ ‖𝑆𝐴𝑦‖2 ≤ (1 + 𝜀)‖𝐴𝑦‖2 

Clarkson and Woodruff (2013) describe the use of the count sketch matrix (Charikar et. al. 2004) to 
generate such a subspace embedding matrix. The count sketch matrix has the advantage over other 
subspace embedding matrices of being able to compute 𝑆𝐴 in 𝑂(nnz(𝐴)) time, where nnz(𝐴) is the 

number of non-zero entries in 𝐴. For comparison, the best previous algorithm requires O(𝑚𝑛 log 𝑡) 
time to find such a matrix 𝑆. Since the count sketch matrix is sparse, Clarkson and Woodruff call 𝑆 a 
sparse embedding matrix. 

Construction 
To construct the sparse embedding matrix 𝑆, we follow the same algorithm for generating a count 
sketch matrix. For every column in 𝑆, we add one non-zero entry in a uniformly chosen random 

row. We choose the non-zero entry to be either 1 or −1 with probability 
1

2
 each. 

Let 𝐴 be an 𝑚 × 𝑛 matrix of rank 𝑟. Let 𝑆 be a 𝑡 × 𝑚 matrix, where 𝑡 < 𝑚. 

Eq 2 

For all 𝑗 = 1 … 𝑚, 𝑆ℎ(𝑗),𝑗 = {
1 with probability 

1

2

−1 with probability 
1

2

 

The function ℎ(𝑗) defines a hashing function with column 𝑗 as the input. For our count sketch 
matrix, we can let ℎ(𝑗) select an integer from 1 to 𝑡 with uniformly random distribution. Ideally, we 
would want ℎ(𝑗) to be a perfect hashing function, such that each column hashes to a unique row. In 
this case, every column has exactly one entry, and every row has at most one entry. 

Eq 3 

∀𝑗, 𝑗′, 𝑗 ≠ 𝑗′ → ℎ(𝑗) ≠ ℎ(𝑗′) 

Since we choose 𝑡 < 𝑚 (and ideally 𝑡 ≪ 𝑚), there is a high probability that ℎ(𝑗) will be perfectly 
hashed, or very close to perfectly hashed, because the domain is smaller than the range. 



Selection of 𝑡 
We defined the size of the sparse embedding matrix to be dependent on the number of rows in 𝐴 
and an arbitrary variable 𝑡. We want 𝑡 to be smallest value which satisfies the epsilon inequality in 
Eq 1. 

Clarkson and Woodruff proved that 𝑡 = 𝑂 (polylog (
𝑛

𝜀
)) for large matrices or 𝑡 = 𝑂 (polylog (

𝑟

𝜀
)) 

for high rank matrices, where polylog(𝑥) represents some combination of polynomials and 
logarithms. In this case, these polynomials typically have a degree greater than 2. 

Intuitively these bounds make sense as well. As 𝜀 decreases, 𝑡 must increase to meet tighter bounds. 
As the rank of 𝐴 increases, 𝑡 must increase to better represent the column space. As 𝑛, the number 
of columns, or 𝑟, the rank, increases, 𝑡 must increase to satisfy the potentially larger column space. 

Proof 
Given some fixed vector 𝑦, the norm of 𝑆𝑦 is within the norm of 𝑦 with high probability 1 − 𝑒−𝑛. 

Eq 4 

(1 − 𝜀)‖𝑦‖2 ≤ ‖𝑆𝑦‖2 ≤ (1 + 𝜀)‖𝑦‖2 

Since we would like for 𝑆 to preserve the norm for range(𝐴), which may be a large set of vectors 𝑦, 
we will have to sacrifice the property of high probability. 

We pick of set of vectors which form an “𝜀-net” on vectors in range(𝐴). Since this is scale invariant, 
we can limit these vectors to those of unit length. These vectors cover the range(𝐴). 

Eq 5 

∀𝑥 ∈ range(𝐴), ∃𝑦 ∈ 𝜀-net s. t. ‖𝑥 − 𝑦‖2 ≤ 𝜀 

The size of this net grows exponentially with dimensionality. For example, to achieve this net in a 
single dimension we would only need two vectors (+𝜀 and −𝜀). For every additional dimension, 
both directions are possible in each dimension, thus increasing exponentially in rank 𝑟 or 𝑛. 

A union bound over this set states that if we have a given probability for a fixed 𝑦, then the 
probability over all 𝑦 must be less than or equal to the sum of each individual 𝑦. 

Finally, for a sufficiently fine net, linearity implies that Eq 4 holds for all 𝑦 in range(𝐴). This means 
that as long as the vectors that weren’t chosen for the 𝜀-net are close to the something in the net, 
that vector will also satisfy the inequality. 

Analysis 
The construction of 𝑆 is oblivious to 𝐴, which means 𝐴 does not even have to be accessed to 
construct 𝑆. It also means that it can usually be applied generically to any computation. Bad sparse 
embeddings could arise if the non-zero entries mix important information in 𝐴, or if a certain row is 
entirely skipped (no ℎ(𝑗) hashes to that row). 

Since we really care about the range of 𝐴 (and how 𝑆 works with the range of 𝐴), we only need an 
orthonormal basis of the range of 𝐴 to study 𝐴. In particular, this could be the left singular values of 
the SVD of 𝐴 (𝑈 in 𝑈Σ𝑉𝑇). We want to prevent 𝑆 from mixing norms of 𝑈 (leverage scores of 𝐴) that 
are large, because those embed the bulk of the information in 𝐴. 

One key result from Clarkson and Woodruff’s paper is identifying how many rows of 𝐴 can have 

large leverage scores. For any 𝛼 ≤ 1, there is a fixed set 𝐻 that depends upon range(𝐴) of size 
𝑛

𝛼
  



such that for any unit vector 𝑦 in range(𝐴), 𝐻 contains all the indices where 𝑦 is larger than √𝛼 in 
magnitude. This turns out to also be the set of large leverage scores of 𝐴. 

Eq 6 

‖𝑦‖2 > √𝛼 

If 𝑡 is sufficiently large, then with high probability, no two distinct indices 𝑗, 𝑗′ ∈ [1, 𝑚] such that 
they hash to the same row. 

Eq 7 

𝑡 ≥ 𝑘|𝐻|2 → ∀𝑗, 𝑗′ ∈ [1, 𝑚], 𝑗 ≠ 𝑗′, ℎ(𝑗) ≠ ℎ(𝑗′) 

This implies that with high probability, the rows with large leverage scores are perfectly hashed. 

Comparison to the Johnson Lindenstrauss Transform 
The Fast Johnson Lindenstrauss Transform (FJLT) transform also generates a subspace embedding 
matrix. Like the sparse embedding matrix, the FJLT is oblivious to 𝐴, and chooses 𝑡 independent of 

𝑚. The 𝑡 chosen by the FJLT transform is proportional to 
𝑛

𝜀2, which is generally smaller than that of 

the sparse embedding matrix. However, the FJLT produces a dense matrix, and requires O(𝑚𝑛 log 𝑡) 
time to compute 𝑆𝐴, whereas the sparse embedding matrix only require 𝑂(nnz(𝐴)). 

Application to LSRN 
One direct application of the sparse embedding matrix is to over constrained least squares 
problems. One drawback of using LSRN, is that it requires a matrix product, which can be expensive 
for dense matrices. Instead of solving min‖𝐴𝑥 − 𝑏‖2, we can solve min‖𝑆(𝐴𝑥 − 𝑏)‖2. That is, if 𝑥∗ 
solves min‖𝑆(𝐴𝑥∗ − 𝑏)‖2, then min‖𝐴𝑥∗ − 𝑏‖2 is within 𝜀 of the actual solution. 

Using the sparse embedding, we are solving an 𝑛 dimensional space problem in a 𝑡 dimensional 
space. Solutions in the 𝑡 dimensional space generalize to the 𝑛 dimensional space, especially if 𝐴 has 
low rank. 

Clarkson and Woodruff propose solving this problem in 𝑂 (nnz(𝐴) + 𝑂 (
𝑑3

𝜀−2 log7 (
𝑑

𝜀
))) time and 

with probability 
2

3
 by computing 𝑆𝐴 and 𝑆𝑏 in 𝑂(nnz(𝐴)) time, and then using the FJLT to solve the 

remaining LS problem. The authors also propose an iterative solution by preconditioning the 

matrix and applying Krylov or CG methods in 𝑂 (nnz(𝐴) log (
𝑛

𝜀
) + 𝑟3 log2 𝑟 + 𝑟2log (

1

𝜀
)) time. 
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