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1 LSRN
We are interested in computing x̂ = A+b to solver the problem minx ‖Ax − b‖2. We assume
A ∈ Rm×n with m >> n and rank(A) = n. At a high level, we use the following strategy

LSRN Algorithm
Starting with input matrix A ∈ Rm×n, rank parameter k, and error
parameter ε.

1. Pick γ > 1 and set s = dγne.

2. Generate G ∈ Rs×m with i.i.d entries ∼ N(0, 1).

3. Let Â = GA.

4. Generate the SVD-decomposition Â = ÛΣ̂V̂ T .

5. Let N = V̂ Σ̂−1.

6. Find solution ŷ to miny ‖ANy − b‖2.

7. Return Nŷ.

To prove that this works we need to assert that N can be used as a preconditioner and that
κ(AN) is controllable. If we solve ‖ANy − b‖2 and use x∗right = Nŷ, for x∗ and x∗right to match
we need range(A+) = range(N). In fact, this holds almost surely

Proof. range(N) = range(V̂ ) = range(A+) = range(ATGT ) = range(V Σ(GU)T ). Due to how
G is constructed, (GU)T is full rank almost surely.

We now aim to bound κ(AN), for which we use the two following lemmas

Lemma 1. The spectra of AN is the same as that of (GU)+, independently of A.

Lemma 2. Consider a s× n gaussian random matrix, with σ1 ≥ σ2... ≥ σ2, then

max

[
P (σ1 ≥

√
s+
√
n+ t), P (σn ≤

√
s−
√
n− t)

]
≤ e−t

2/2

Using these two lemmas it becomes possible to bound the condition number of AN , that in
turns allows us to use standard conjugate gradient convergence analysis to prove convergence rate
of the LSRN. These results are presented in the two theorems below.

Theorem 1. For any α ∈ (0, 1−
√
n/2) we have P

(
κ(AN) ≤ 1+α+

√
n/s

1−α−
√
n/s

)
≥ 1− e−α2s/2

Theorem 2. In exact arithmetic, given ε > 0, using LSQE to solve miny ‖ANy − b‖2 converges
in log(2/ε)/log(α +

√
n/s) in the sense ‖ŷ − y∗‖(AN)T (AN) ≤ ε‖y∗‖(AN)T (AN) with probability at

least 1− 2e−α
2s/2 for any alpha ∈ (0, 1−

√
n/2).
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2 Sparse Sketching Matrices
If A is sparse, the above strategy is wasteful as the random matrices will be dense. We are
instead interested in finding a sparse sketching matrix S ∈ Rt×m so that we can capture AS
in O( # nonzeros in A). Embeddings are common techniques in data analysis and primitives in
algorithm design, where the typical use is dimensionality reduction. The key is finding a S such
that for any fixed m× n matrix A with rank r, we have with constant probability

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2 ∀x ∈ Rn

There are two principal types of embeddings, subspace embedding where we embed range(A),
and affine embeddings where we want ‖Ax− b‖ ≈ ‖S(Ax− b)‖. If there was no sparsity, we could
use JL-transforms which are randomized linear transformations that preservy geometry with high
probability. These transformations are typically dense however, and thus not necessarily useful in
the sparse context. Another alternative would be subsampled, randomized, hadamard transform.
These have no dependence on A but yield t = O(n/ε2) at a cost O(mn log n).
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