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A single pass randomized algorithm for the approximate eigenvalue de-
composition

Recall that in Lecture 13, a randomized algorithm was described for computing a low rank approx-
imation to the eigendecomposition of a matrix A. A drawback to this method is that the matrix A
must be accessed multiple times (twice), which may not be possible in streaming models where A
cannot be stored in memory [1]. For the streaming model, we require a single pass algorithm, where
A is accessed only once. To derive this algorithm, we begin with a brief review of the multipass
method, and work under the assumption that A ∈ Rn×n is a symmetric matrix.

Algorithm 1 The multipass method

1: Using the range-finding algorithm described in Lecture 13, we first find Q ∈ Cn×k, k � n, so
that A ≈ QQTA. This is the first time A is accessed.

2: Set B = QTAQ . This is the second time A is accessed.
3: Find the eigendecomposition B = V ΛV T .
4: Set X = QV .
5: A ≈ XΛXT .

By eliminating multiplication by A in Step 2 of the algorithm, we can develop a single pass
method of computing the eigendecomposition, where access to A is only required once.

The single pass method.

To eliminate A in Step 2, we examine the matrix Q more closely. The range-finding algorithm in
Step 1 proceeds by selecting a Gaussian random matrix Ω ∈ Rn×k. Then, the matrix Y = AΩ is
formed, and Q is found by computing the thin QR factorization Y = QR.

Since B = QTAQ, we have that BQT Ω = QTAQQT Ω. Using the fact that A is symmetric, it
follows that A ≈ AQQT , so BQT ≈ QTAΩ = QTY. We can replace Step 2 in the above algorithm
with the following least squares problem:

B̃ = argmin
∥∥BQT Ω−QT ΩY

∥∥
F
, subject to B̃ = B̃T , (1)

which has no explicit dependence on A. This results in the following algorithm:

Algorithm 2 The single pass method

1: Select the Gaussian random matrix Ω ∈ Cn×k. Set Y = AΩ and find Y = QR, so that
A ≈ QQTA.

2: Solve B̃ = argmin‖BQT Ω−QT ΩY ‖2, with B̃ = B̃T .
3: Find the eigendecomposition B̃ = Ṽ Λ̃Ṽ T .
4: Set X̃ = QṼ .
5: A ≈ X̃Λ̃X̃T .
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Improving the accuracy.

In Algorithm 2, we have traded the exact (in infinite precision) eigendecomposition of B = QTAQ
for an approximate eigendecomposition satisfying the least squares problem, and this results in some
loss of accuracy. The situation is particularly bad if QT Ω is ill-conditioned. Specifically, the error
‖A− X̃Λ̃X̃T ‖2 can be worse than the error produced via Algorithm 1 by a factor of 1/σmin, where
σmin is the smallest singular value of QT Ω. This issue can be alleviated in the following way: If
k is the target rank, choose a small oversampling factor p and draw a Gaussian random matrix
Ω ∈ Rn×(k+p). Form Y = AΩ, as before, but find Y = QR and set Q̃ = Q( : ,1:k), i.e., choose Q̃ as
the first k columns of Q. Then, the matrix QT Ω is of size k × (k + p), so that the linear system (1)
is overdetermined [2].

The non-symmetric case

A single pass eigendecomposition algorithm can also be devised when A is not symmetric. In this
setting, we require bases for the ranges of A and AT . Let Y = AΩ1, and select W = AT Ω2, where
Ω1 and Ω2 are each Gaussian random matrices. Then, find the thin QR factorizations Y = QyRy

and W = QwRw, so that A ≈ QyQ
T
yAQwQ

T
w. We now require an approximation to the matrix

B = QT
yAQw, and observe that

QT
y Y ≈ BQT

wΩ, QT
wW ≈ BTQT

y Ωw. (2)

The least squares problem in (1) must be replaced by the system of equations in (2) for which a
minimum residual solution B∗ ≈ B is sought [2].

An introduction to the LSRN (least squares random normal) method

The LSRN is another application of randomized linear algebra. It is used to solve linear least squares
problems which are over or underdetermined. The LSRN method was proposed in [3] in 2014 as a
fast and accurate way to solve these kinds of problems. Code and related papers are available at
http://web.stanford.edu/group/SOL/software/lsqr/

Problem setting.

We want to solve find the min-length solution to

min
x∈Rn

‖Ax− b‖2 , (3)

given A ∈ Rm×n and b ∈ Rm, with m � n or m � n, where ‖ · ‖2 is the Euclidean norm. Notice
that the minimization problem (3) may have many solutions. What we are interested is the one with
minimum length, i.e., with the smallest 2 norm. Therefore, we may view this optimization problem
as

min
x∈Rn

||x||2

subject to x ∈ arg min ||Ax− b||2 (4)
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In the following discussion, we consider the case where m � n (so the linear system is over-
determined), and assume the matrix A has full column rank (i.e., rank(A) = n).

Deterministic ways to solve the least squares problem.

In this section, we review two ways to solve the least squares problem (4).

The SVD approach.

One traditional approach to solve (4) is to use the singular value decomposition (SVD) of A. If
A = UΣV T is the reduced (truncated) SVD of the matrix A, where U ∈ Rm×n, Σ ∈ Rn×n, and
V ∈ Rn×n, then x∗ = V Σ−1UT b = A+b solves the least squares problem, where A+ := V Σ−1UT is
the Moore-Penrose pseudo-inverse of A.
More generally, we can use any complete orthogonal factorization of A to compute x∗; the SVD is
not the only option.

This approach is accurate, but if A is sparse, then we may not want to compute the SVD, and
it may be beneficial to reduce the size of our problem first. This leads to our second method.

The normal equations approach.

Instead of solving the original least squares problem, we look for the min-length solution to the
normal equations

ATAx = AT b. (5)

The solution x∗ also solves the original least squares problem.
We could solve the problem directly, observing that x∗ = (ATA)+AT b. The Cholesky factorization
of ATA yields the desired result. Though less expensive than SVD, this approach is less accurate.
For example, the ill-conditioning of A is amplified when we deal with ATA.
Alternatively, we can use iterative methods to solve (5). Since we assumed rank(A) = n, it follows
that the matrix ATA is positive definite, and the conjugate gradient (CG) method can be applied.
Given A and b, the LSQR method is mathematically equivalent to applying CG on ATA and AT b,
but it improves on this idea by eliminating the explicit computation of ATA.

Preconditioning for least squares systems.

Loosely speaking, the rate of convergence for an iterative method solving the normal equations
depends on the spectrum of ATA. Recall from previous lectures that we have

‖x(k) − x∗‖ATA

‖x(0) − x∗‖ATA

≤ 2

(
κ(ATA)− 1

κ(ATA) + 1

)k

, (6)

where x∗ = A+b is the true solution, and κ(ATA) = ‖ATA‖2 ‖(ATA)−1‖2 is the condition number
of ATA. Unless ATA is well–conditioned, the performance of iterative method is uncontrollable.
If, by any means, we are able control the condition number, then we can find a guarantee on the
number of iterations required for convergence. In the LSRN scheme, a preconditioner is selected in
a manner that controls the condition number of the normal equations. This preconditioner is built
using randomness, and is discussed in greater detail in Lecture 16. Here, we give an outline of the
method.
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Right preconditioning.

For tall, skinny matrices (n� m), we precondition from the right. For the case where m� n, left
preconditioning is used instead. In general, the idea behind a right-preconditioner is to choose a
matrix N ∈ Rn×s and solve the (better conditioned) least squares problem ANy = b for y, and then
set x = Ny.
In addition to selecting N so that the resulting system is better conditioned, we also require that
range(N) = range(AT ). This ensures that for the true least squares solution x∗right, we have

x∗right = N(AN)+b = x∗ = A+b.

We include pseudocode for the LSRN algorithm below; additional details are available in Lecture 16
and in [3].

Algorithm 3 The LSRN algorithm for computing x̂ ≈ A+b when m� n

1: Choose the oversampling parameter γ > 1, and set s = dγne.
2: Generate s×m matrix G with iid N(0, 1) entries.
3: Set Ã = GA.
4: Compute the reduced SVD of Ã: Ã = Ũ Σ̃Ṽ T .
5: Let N = Ṽ Σ̃−1.
6: Compute the min-length solution to miny ||ANy − b||2, via, eg. LSQR.

Denote the solution as ŷ.
7: Return x̂ = Nŷ.
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