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1 Fixed-rank approximation problem

We would like to solve the Fixed-rank approximation problem: given A ∈ Rm×m, target rank k, and
oversampling parameter p, find Q ∈ Rm×(k+p with Q>Q = I, such that

‖(I −QQ>)A‖ ≤ c1σk+1 + c2

∑
j>k

σ2
j

1/2

with high probability. Here σj denote the jth largest singular value of A.

1.1 A prototype algorithm

We now state the prototype algorithm that solve the Fixed-rank approximation problem,

1) Draw Ω ∈ Rn×(k+p) with independent Gaussian random entries

2) Form the matrix product Y = AΩ.

3) Construct a matrix Q whose columns form an orthonormal basis for the range of Y through QR
factorization: Y = QR where Q ∈ Rm×(k+p) and R ∈ R(k+p)×n

The computational cost of this algorithm is:

(k + p)n× Trand︸ ︷︷ ︸
generate a N(0,1)r.v.

+(k + p)× Tmult︸ ︷︷ ︸
cost of AX

+(k + p)2m

Empirically, we have found that the performance of this algorithm depends very little on the quality of the
random number generator used. The actual cost depends substantially on the matrix A and the computa-
tional environment that we are working in.

1.2 Error bound via linear algebra

Our analysis consist of two parts,

1) Given Ω, build a deterministic bound.

2) introduce probability and get w.h.p bounds.

1



2 Randomized Range Finding Algorithm

We will now develop a deterministic error analysis for the prototype algorithm disccussed above.

Since QQ> = PY : spectral projector onto range(Y ), we have

‖A−QQ>‖ = ‖(I − PY )A‖

To begin, wemust introduce some notation. Let A be an m×n matrix that has a singular value decomposition
A = UΣV >. Roughly speaking, the proto-algorithm tries to approximate the subspace spanned by the first
k left singular vectors, where k is now a fixed number. To perform the analysis, it is appropriate to partition
the singular value decomposition as follows.

A = U

 k︷︸︸︷
Σ1

min(m,n)−k︷︸︸︷
0

0 Σ2

 n︷︸︸︷
V >1
V >2

 k
min(n,m)− k = U1Σ1V

>
1︸ ︷︷ ︸

rank k

+U2Σ2V
>
2︸ ︷︷ ︸

‖‖2=σk+1

where U = [U1, U2].

Let Ω be an n× (k + p) test matrix, then the sample matrix Y is expressed as

Y = AΩ = U

[
Σ1Ω1

Σ2Ω2

]
with Ω1 = V >1 Ω and Ω2 = V >2 Ω. It is a useful intuition that the block Σ1Ω1 reflects the gross behavior of
A, while the block Σ2Ω2 represents a perturbation.

Theorem 1.1. (Deterministic error bound). A is an m×n matrix with singular value decomposition UΣV >.
Fix k > 0 and Ω, let Y = AΩ, then

‖(I − PY )A‖22 ≤ ‖Σ2‖22 + ‖Σ2Ω2Ω+
1 ‖22

where Ω+
1 represent the pseudo-inverse matrix of Ω1. The inequality also holds for Frobenius norm ‖‖F .

Proof. See Halko et al. [1] for details.

1.3 Gaussian test matrices

Our analysis requires detailed information about the properties of Gaussian matrices. In particular, we must
understand how the norm of a Gaussian matrix and its pseudoinverse vary. We summarize the relevant
results and citations here.

Proposition 1.2. (Expected norm of a scaled Gaussian matrix). For two fixed matrices S, T and a Gaussian
random matrix G , (

E‖SGT‖2F
)1/2

= ‖S‖F ‖T‖F
E‖SGT‖2 ≤ ‖S‖2‖T‖F + ‖S‖F ‖T‖2

Proposition 1.3. (Norm bounds of a pseudo-inverted Gaussian matrix). Expected norm of psuedo-inverse
for a k × k + p Gaussian random matrix G is

E‖G+‖2 ≤
e
√
k + p

p

Furthermore, for p ≥ 4 and given only t ≥ 1.

P{‖G+‖2 ≥
e
√
k + p

p+ 1
t} ≤ t−(p+1)
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1.4 Probabilistic error bounds of Algorithm

Here we present tail bounds for the approximation error, which demonstrate that the average performance
of the algorithm is representative of the actual performance.

Theorem 1.4. (Deviation bounds for the Frobenius error). For algorithm with p ≥ 4 and all u, t ≥ 1, then

‖(I − PY )A‖2 ≤

(1 +

√
3k

p+ 1

)
σk+1 +

√
k + p

p+ 1

∑
j>k

σj

1/2
+ ut

e
√
k + p

p+ 1
σk+1

with failure probability at most 2t−p + e−u
2/2. A simplified version is

‖(I − PY )A‖2 ≤
(

1 + σ
√

(k + p)p log p
)
σk+1 + 3

√
k + p

∑
j>k

σj

1/2

with failure probability 3p−p.

It is been demonstrated in Halko et al. [1] that the Fixed-rank approximation can be adapted to solve Fixed-
accuracy approximation problem. We can get some information about ‖(I − PY )A‖2 from ‖(I − PY )Aw‖2
where w is random.

In fact, we know from previous lecture that given r, Gaussian random vectors w(i), i = 1, ..., r, we have

‖(I − PY )A‖2 ≤ 10

√
2

π
max
i=1,...,r

‖(I − PY )Aw(i)‖2

with prbability 1− 10−r, where r is a small integer, for example, 10. See Halko et al. [1] for details.
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