
Data Sparse Matrix Computation - Lecture 11

Dongping Qi, Sujit Rao, Tianyi Shi

October 16, 2017

Contents

1 Krylov Method Review 1
1.1 Preconditioned Method . 2
1.2 How to Pick M? . 2
1.3 Several Examples . 3
1.4 Preconditioned Conjugate Gradient method (PCG) 3

2 Randomized algorithms 4
2.1 Randomized low-rank factorization 4
2.2 How to find such a Q . 5
2.3 How to construct Q with randomness 5
2.4 An adaptive randomized range finder algorithm 6
2.5 Example of implementation of the adaptive range approximation

method . 7

References 8

1 Krylov Method Review

We have already seen various methods for Ax = b, based on Krylov method. The
convergence of these methods highly depends on the behavior of A’s spectrum.

For example, for Conjugate Gradient method, if A is s.p.d and we try to
solve Ax = b. Denote Pk as all the polynomials p(x) of degree k with p(0) = 1
and x∗ the exact solution, then CG is equivalent to the following minimization

min
p∈Pk

‖p(A)x∗‖2A

therefore it is implicitly trying to find a polynomial that is small on the spectrum
of A with p(0) = 1. It is hard if the eigenvalues are spread out, however, it is
good if the eigenvalues are clustered. In particular, we have

‖e(k)‖A
‖e0‖A

= inf
p∈Pk

‖p(A)x∗‖A
‖e(0)‖A

≤ inf
p∈Pk

max
λ∈Λ(A)

|p(λ)|

If we let K2 = λmax/λmin, which is the condition number of A, then we will
have

1

‖e(k)‖A
‖e0‖A

≤ 2
(√K2 − 1√

K2 + 1

)k
Therefore a natural idea is to precondition A to improve the convergence.

Another example is the GMRES method. With the same notation above
and denote rk = b−Ax(k) as the kth residue. We will have

‖rk‖2
‖b‖2

≤ inf
p∈Pk

‖p(A)‖2

Assume that A is diagonalizable and A = XΛX−1, then

‖rk‖2
‖b‖2

≤ K2(X) inf
p∈Pk

{ sup
λ∈Λ(A)

|p(λ)|}

Again we can see clearly that the convergence depends on the spectrum.

1.1 Preconditioned Method

Key idea : Pick M s.t.

• We can solve Mx = d cheaply.

• M ≈ A

Then we can solve

M−1Ax = M−1b

instead via a Krylov method with K(M−1A,M−1b).
The convergence now depends on the spectrum of M−1A, i.e. Λ(M−1A) and

at each step of Arnoldi’s algorithm, we can apply A and solve a system with M
(instead of just applying A).

1.2 How to Pick M?

There are two extreme cases about how to choose M .

• M = A: Great convergence in a sense (M−1A = I), but no computational
gains (still need to solve Ax = b).

• M = I: More efficiency per iteration (Ix = d is easy to solve), but no
improvement to convergence.

We hope that in the middle of these two extreme cases there might be
something useful. In reality, this is a bit of “art” and requires problem specificity.

2

Figure 1:

1.3 Several Examples

1. Simple test: diagonal preconditioner M = diag(A)

This is widely called the Jacobi preconditioner probably due to the tradi-
tional Jacobi iteration method, where we decompose A = D + R, D is a
diagonal matrix and the iteration is constructed as

xk+1 = D−1(b−Rxk)

This preconditioning is cheap, but often not effective (it is efficient for
diagonally dominant matrices).

2. Rank structured factorization.

If A has some low rank structure, then we can factor A as M ≈ A to
some accuracy. Solving the systems with respect to M is cheap. In some
situations we can quickly compute an approximate inverse of A and apply
it to a vector.

1.4 Preconditioned Conjugate Gradient method (PCG)

In this section, we will discuss about the Preconditioned Conjugate Gradi-
ent method. If A is s.p.d, choose M also s.p.d, we can still use Conjugate
Gradient method with some mild modifications.

Rationale: If M is s.p.d, it has the Cholesky decomposition M = CCT .
Then we have

Ax = b ⇔ M−1Ax = M−1b ⇔ (C−1AC−T)CTx = C−1b

Rewrite the form into Âx = b̂ where Â = C−1AC−T , x̂n = CTxn and
b̂ = C−1b. We can write out the Preconditioned Conjugate Gradient
method explicitly. The residual will be

r̂n = b̂− Âx̂n = C−1b− C−1Axn = C−1rn

3

Suppose that in the nth iteration the searching direction vector is dn and
let d̂n = CT dn. The Conjugate Gradient method has two important value
to compute in each step. Due to definition they are

α̂n =
r̂Tn−1r̂n−1

d̂Tn−1Âd̂n−1

=
rTn−1C

−TC−1rn−1

dTn−1Ad
T
n−1

=
rTn−1M

−1rn−1

dTn−1Ad
T
n−1

β̂n =
r̂Tn r̂n

r̂Tn−1r̂n−1
=

r̂TnC
−TC−1r̂n

rTn−1C
−TC−1rn−1

=
r̂TnM

−1r̂n
rTn−1M

−1rn−1

and the new x̂n and d̂n can be generated. Therefore we only need to know
M−1 during each iteration. This forms into the general upstate step for
PCG. There are also several different preconditioning method and readers
can refer to [1].

2 Randomized algorithms

We will focus on the construction of low-rank approximations, since this is where
randomized algorithms were first used in numerical linear algebra. These can
often be building blocks for larger algorithms.

Why use randomization if we have existing algorithms to find low-rank ap-
proximations? One reason is to deal with very large matrices. Also, some of
the tradeoffs can make more sense for certain problems – if we have a matrix
whose entries are collected from empirical data, then why should we compute
a factorization to machine precision if our matrix isn’t even known to machine
precision? Additionally, the data flow and ordering of the matrices used in ran-
domized algorithms can be more suitable for modern platforms and parallelism.

Randomized algorithms are often fairly new, but have close connections to
classical algorithms like Krylov methods and subspace iterations. Randomiza-
tion yields computational gains and sometimes robustness (which partly comes
from how we analyze the algorithms).[2]

2.1 Randomized low-rank factorization

Given A ∈ Rm×n, we want to compute B ∈ Rm×k and C ∈ Rk×n such that
A ≈ BC. Classically, this costs O(mnk).

We will solve this in two steps.

1. Construct a low-dimensional subspace that captures the essential infor-
mation of A (using randomness).

2. Restrict A to this new subspace (resulting in a much smaller matrix) and
then apply classical techniques and factorizations to this restriction. After
this, we can get a factorization of A easily.

In (1), we will find a matrix Q with orthonormal columns such that A ≈
QQTA. We want Q to have as few columns as possible to achieve some given
accuracy.

Then given Q, we compute a truncated SVD of A. Set B = QTA, so
A ≈ QB. If Q is n × j and B is k × n, and we already have what looks like a

4

low-rank approximation. However, we don’t have an idea of what the singular
values look like. The second step is to compute an SVD of B = ŨΣV T . Then
Ũ is unitary and k × k, Σ is k × k, and V is n × k. If we set U = QŨ , then
A ' UΣV T is the desired factorization.

For this part, we’re only doing dense linear algebra on B, which is k × n.
Thus the complexity of this part is O(k2n), which is cheaper. (The algorithms
which only make one pass over the data avoid computing B = QTA explicitly.)

2.2 How to find such a Q

Our goal is to solve a Fixed-precision Approximation Problem here:
Given A ∈ Rm×n and accuracy ε, find Q with k = k(ε) orthonormal columns
such that ||(I −QQT)A||2 ≤ ε. That means, the range of Q is a k-dimensional
subspace that captures most of the action of A, with k as small as possible.

We know from previous exposure to singular values of matrix that if A have
singular values σ1, σ2, . . . , σmin(m,n), then
minrank(X)≤j ||A−X||2 = σj+1.
Therefore the optimal solution is X = QQTA with Q as first j left singular vec-
tors, and we can choose the minimal k(ε) to be the number of σ’s greater than ε.

Since it is hard to solve a Fixed-precision Approximation Problem directly,
we first solve an easier problem, the Fixed-rank approximation problem:
Given k and oversampling parameter p, find Q ∈ Rm×(K+P) with orthonormal
columns such that
||A−QQTA||2 ≈ minrank(X)≤k ||A−X||2 ≤ c1 · σK+1 + c2 · (

∑
j>K σ

2
j)1/2.

When p > 0, we have an opportunity to use a small number of additional
columns that provide a flexibility that is crucial for the effectiveness of the com-
putational methods we discuss.

The Fixed-rank approximation can be adapted to solve Fixed-accuracy ap-
proximation problem. We can build the basis matrix Q incrementally and at
any point of the computation, inexpensively estimate ||A − QQT ||2. We will
show one adaptive algorithm later in Section 2.4.

2.3 How to construct Q with randomness

The remarks in this section mainly come from [2, section 1 and section 4].
We can follow the following steps to construct Q with randomness:

1. Draw a random vector w ∈ Rn×1, then y = Aw is a sample from the range
of A.

2. Repeat this k times y(i) = Aw(i).

There are some things we note in this second step:

• Generically, y(i) are linearly independent.

5

• If A were exactly rank k, then an orthonormal basis for y(1), y(2),
. . . , y(k) gives us an orthonormal basis for the range of A.

• More realistically, A = B +E, where A is of rank k and E is a small
perturbation; now y(i) do not span the range of A, but using k + p
samples suffices to capture the range of A, for a fixed small number
of p.

• We also have some rules of choosing p: ”very large matrices need
large p; the more rapid the decay of the singular values, smaller p
will be needed; Gaussian matrices succeed with very small p, but are
not always the most cost-effective option” [2].

• Remarkably, ”for certain types of random sampling schemes, the fail-
ure probability decreases superexponentially with the oversampling
parameter p” [2]; in practice, setting p = 5 or p = 10 often gives
superb results.

3. Let the y(i)’s above form a random matrix Ω, form a matrix Y = AΩ and
construct a matrix Q whose columns form an orthonormal basis for the
range of Y, say doing a QR factorization Y = QR.

The third step has a bottleneck that it takes O(mnl) to compute the ma-
trix product AΩ when Ω is standard Gaussian (which is our basic choice for
this randomness method). To make it quicker, we can use a structured random
matrix that allows us to compute the product in O(mn log(l)) flops. One of the
simplest structured random matrix is the Subsampled Random Fourier Trans-
form, and readers can refer to [2] on how to construct a SRFT Ω. In this way,
we can use subsampled FFT to make our range finder algorithm in O(mn log(l)).

Now we state a Lemma that can help with understanding the error bound
of adaptive methods with Gaussian random vectors.

Lemma 1 Let B be a real m × n matrix. Fix a positive integer r and a real
number α > 1. Draw an independent family {w(i) : i = 1, 2, . . . , r} of standard
Gaussian vectors. Then

||B|| ≤ α
√

2
π maxi=1...r ||Bw(i)||2 except with probability α−r.

Then setting B = (I − QQT)A and α = 10 we can get an error estimation
that will be covered in future lectures:

||(I − QQT)A||2 ≤ 10
√

2
π maxi=1...r ||(I − QQT)Aw(i)||2. with probability at

least 1− 10−r

2.4 An adaptive randomized range finder algorithm

We introduce here an adaptive randomized range finder algorithm that solves
the Fixed-precision Approximation Problem with the help of an algorithm that

6

solves the simpler Fixed-rank approximation problem. This is Algorithm 4.2 in
[2].

1. Draw standard Gaussian vectors w(1), . . . , w(r) of length n.

2. For i = 1, 2, . . . , r, compute y(i) = Aw(i).

3. j = 0.

4. Q(0) = [], the m× 0 empty matrix.

5. while max (||y(j+1)||, ||y(j+2)||, . . . , ||y(j+r)||) > ε/(10
√

2/π),

• j = j + 1

• Overwrite y(j) by (I −Q(j−1)(Q(j−1))(T))y(j).

• q(j) = y(j)/||y(j)||.

• Q(j) = [Q(j−1)q(j)].

• Draw a standard Gaussian vector w(j+r) of length n

• y(j+r) = (I −Q(j)(Q(j))(T))Aw(j+r)

• for i = (j + 1), (j + 2), . . . , (j + r − 1): overwrite y(i) by y(i) −
q(j)〈q(j), y(i)〉.

6. Q = Q(j).

2.5 Example of implementation of the adaptive range ap-
proximation method

In [2, section 7.1], the authors perform an experiment to test the behavior of
the adaptive method shown in Section 2.4.

The writers consider a 200× 200 matrix A that results from discretizing the
following single-layer operator associated with the Laplace equation:
[Sσ](x) = const ·

∫
Γ1

log |x − y|σ(y)dA(y), x ∈ Γ2 where Γ1 and Γ2 are the two

contours in R2.

Then they approximate the integral with the trapezoidal rule and estimate
that the discretization error would be less than 10−20 for a smooth source σ
and they implement the Algorithm in Matlab v6.5. Quantities, observations

7

and conclusions below are all direct quotes from [2].

For each number l of samples, they compare the following three quantities:

1. The minimum rank-l approximation error σl+1.

2. The actual error el = ||(I −Q(l)(Q(l))(T))A||.

3. A random estimator fl for the actual error el obtained from the error
bound given above with the parameter r set to 5.

From the experiment they make three observations:

1. The error el incurred by the algorithm is remarkably close to the theoret-
ical minimum σl+1.

2. The error estimate always produces an upper bound for the actual error.
Without the built-in 10× safety margin, the estimate would track the ac-
tual error almost exactly.

3. The basis constructed by the algorithm essentially reaches full double-
precision accuracy.

The authors’ conclusion is that the trial above is typical. They examine
the empirical performance of the algorithm over 2000 independent trials and
offer four observations: (i) The initial run detailed above is entirely typical. (ii)
Both the actual and estimated error concentrate about their mean value. (iii)
The actual error drifts slowly away from the optimal error as the number l of
samples increases. (iv) The error estimator is always pessimistic by a factor of
about ten, which means that the algorithm never produces a basis with lower
accuracy than requested. The only effect of selecting an unlucky sample matrix
Ω is that the algorithm proceeds for a few additional steps.

References

[1] G.H. Golub and C.F. Van Loan. Matrix Computations. Matrix Computa-
tions. Johns Hopkins University Press, 2012.

[2] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding struc-
ture with randomness: Probabilistic algorithms for constructing approxi-
mate matrix decompositions. SIAM review, 53(2):217–288, 2011.

8

	Krylov Method Review
	Preconditioned Method
	How to Pick M?
	Several Examples
	Preconditioned Conjugate Gradient method (PCG)

	Randomized algorithms
	Randomized low-rank factorization
	How to find such a Q
	How to construct Q with randomness
	An adaptive randomized range finder algorithm
	Example of implementation of the adaptive range approximation method

	References

