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1 Convergence of the Conjugate Gradient Method
In the previous lecture, the Conjugate Gradient (CG) method and its convergence properties were
discussed. In particular, it was shown that, given a symmetric positive-definite matrix A and a
right-hand side b, then at iteration k of CG, the following error bound holds:
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where e(k) = x(k) − A−1b and κ2 is the 2-norm condition number of A. This implies that, in
order to obtain a solution to Ax = b accurate to O(ε), one would expect to perform O(log( 1

ε )
√
κ2)

iterations of CG. However, this is an upper bound that assumes that the eigenvalues of A are not
clustered; if clusters of eigenvalues appear, CG may converge faster.

2 An Introduction to MINRES and GMRES

MINRES and GMRES are iterative Krylov methods for solving Ax = b in more general cases than
CG. In particular, MINRES solves a linear system for symmetric A, whereas GMRES solves a linear
system for nonsingular A. These work similarly to CG, but whereas CG minimized the objective
minx∈Kk(A;b)

1
2‖x − A

−1b‖2A, these methods find a vector in the kth Krylov space that minimizes
the residual, i.e., they solve minx∈Kk(A;b)

1
2‖b−Ax‖

2
2.

This constrained optimization problem is hard in general, but by making the substitution x(k) =
Vky

(k), we can lift the constraint and reframe the problem as y(k) = argminy∈Rk
1
2‖b − AVky‖

2
2.

This is now a least squares problem. This is fortunate because we have tools for solving least
squares problems (e.g., QR or SVD). However, the matrix AVk has N rows, which still makes this
compuationally expensive for large A.

Fortunately, we can reframe the problem again in a way that significantly reduces the size of
the least squares problem. The first vector of Kk(A; b) is b

‖b‖ , so we can rewrite b as Vk(‖b‖e1)

for any k. Let us assume momentarily that A = AT ; from the Lanczos algorithm, we can
write AVk as Vk+1T̃k. Therefore, ‖b − AVky‖2 =

∥∥∥Vk+1(‖b‖e1 − T̃ky)
∥∥∥

2
. In exact math, the

columns of Vk+1 are mutually orthogonal; this leaves us with the following least squares problem:

y(k) = argminy∈Rk
1
2

∥∥∥‖b‖e1 − T̃ky
∥∥∥2

2
. The size of this problem is (k + 1) × k, which is much more

manageable. Note that in practice, the columns of Vk+1 are not mutually orthogonal; even so, we
know

∥∥∥Vk+1(‖b‖e1 − T̃ky)
∥∥∥

2
≤ ‖Vk+1‖2

∥∥∥‖b‖e1 − T̃ky
∥∥∥

2
, and that because the columns of Vk+1 are

normalized, ‖Vk+1‖2 is small (i.e., not much larger than 1, and never larger than k + 1).
Now suppose A 6= AT . In this case, the above discussion still applies if all instances of T̃k are

replaced with H̃k.

3 Concept of MINRES

In MINRES we start with a linear system (A, b) where A is symmetric but not necessarily positive
definite. Here is the MINRES procedure [AG11],
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MINRES Steps
Outline of components in a single MINRES step

1. Perform one Lanczos step for (A, b).

2. Update the QR factorization of T̃k.

3. Solve the least-square problem y(k) = argminy

∥∥∥ ‖b‖e1 − T̃ky
∥∥∥2
2

4. Update solution x(k) = Vky
(k) and check stopping criteria.

Now consider the cost of MINRES method. Step 1 takes one matrix-vector multiplication, same
as CG. Step 2 requires us to maintain a QR factorization of the tri-diagonal T̃k, but it can be
updated from previous step using Givens rotation in O(1) time. We can take advantage of this
decomposition to solve the least-square problem in step 3, and update x(k+1) from x(k) in O(N)
time with no dependency on k.

MINRES is slightly more expensive than CG due to those technical details, but one of its ad-
vantages is that we get residual for free. Let x∗ be the solution to the linear system. Similar to
CG where ‖x− x∗‖A is monotone-decreasing, MINRES has its residual ‖rk‖2 = ‖Ax(k) − b‖2 is also
monotone-decreasing.

4 Concept of GMRES

When A in the linear system is only nonsingular but not necessarily symmetric, we use GMRES
method which is conceptually very similar to MINRES. Instead of the Lanczos iterations in symmetric
case, we will apply Arnoldi iterations for the non-symmetric A. The outline remains almost
identical,

GMRES Steps
Outline of components in a single GMRES step

1. Perform one Arnoldi step for (A, b).

2. Update the QR factorization of H̃k.

3. Solve the least-square problem y(k) = argminy

∥∥∥ ‖b‖e1 − T̃ky
∥∥∥2
2

4. Update solution x(k) = Vky
(k) and check stopping criteria.

Step 1 again costs one matrix-vector multiplication. However, we now need to store results
of all previous steps (i.e. Vk) since we no longer have the recurrence relation for symmetric case.
Hence the storage cost is O(Nk) at k-th iteration. In step 2 we need to update the QR factorization
for an upper Hessenberg matrix H̃k instead of the tri-diagonal T̃k, resulting in O(k) computation.
Consequently, the computational complexity in going from x(k) to x(k+1) now depends on k as well
for GMRES.

Notice that unlike CG and MINRES, GMRES has a significant memory cost because it needs to
store all Krylov basis vectors. As the number of iterations grows for system that is either very
large or has slow convergence, this cost can becomes too expensive. The most popular answer to
this difficulty is using restart GMRES. In this case we would throw away the stored Vk after a small
number of iterations, modify our initial guess (so far we have only considered using an initial guess
of 0) and restart the GMRES steps. The maximum number of iterations m is usually taken to be
very small (i.e. m = 10), thereby we can even use more accurate methods to maintain the QR
decomposition. The price of the restart is slower convergence and the loss of optimality criterion.
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However, restarted GMRES is almost always preferred in implementations as a practical method for
large-scale problems.

5 QR Update for H̃k

A key ingredient that allows us to efficiently solve the least-square problems in step 3 of both
MINRES and GMRES is the quick update on the QR factorization of the upper Hessenberg matrix H̃k

(tridiagonal for MINRES). Specifically, we leverage the existing decomposition for H̃k−1 and Givens
rotation to compute the update in O(1) for MINRES O(k) for GMRES. To see this, we first write
down the decomposition at step k − 1.

H̃k−1 = Qk−1

[
Rk−1

0

]
where Qk−1 ∈ Rk×k is orthogonal and Rk−1 ∈ R(k−1)×(k−1) is upper triangular. When we proceed
to the next Lanczos step,

H̃k =

[
H̃k−1 hk

0 hk+1,k

]
, hk ∈ Rk×1, hk+1,k ∈ R

Since H̃k−1 is a sub-matrix, we can apply the previous orthogonal transformation to get

[
QTk−1 0

0 1

]
H̃k =

 Rk−1 h̃k−1

0 h̃k,k
0 hk+1,k

 , QTk−1hk =

[
h̃k−1

h̃k,k

]
Notice that to get Rk, we only need to apply one Givens rotation to turn hk+1,k into 0. In
particular, the rotation we need is

Gk =

 Ik−1 0 0
0 ck sk
0 −sk ck

 , ck =
h̃k,k√

h̃2
k,k + h2

k+1,k

, sk =
hk+1,k√

h̃2
k,k + h2

k+1,k

and Qk =

[
QTk−1 0

0 1

]
GTk .

During the update, we need to compute QTk−1hk which is O(k) for GMRES. However, in MINRES
we can take advantage of the fact that H̃k−1 is tridiagonal. This implies h̃k−1 is 0. To get h̃k,k,
we realize there is exactly one Givens rotation that involves k-th row, thereby it can be obtained
in O(1).

6 Iterative Refinement
We have been using x(0) = 0 as the initial solution for both MINRES and GMRES. Here we explore
the case when we have a good guess for the solution of the linear system.

For iterative refinement, we start with a initial solution x(0) which could be non-zero and
compute its residual r = b − Ax(0). Then we solve the system Ad = r with d(0) = 0 and let
x = x(0) + d. It can be quickly observed that

Ax = A(x(0) + d) = (b− r) +Ad = b

Of course this process can be repeated on the new residual, leading to more and more accurate
solutions to the original system. For a description of the iterative refinement procedure,

Iterative Refinement
Starting with a initial solution x0, for the m-th step

1. Calculate residual rm = b− Axm.

2. Solve the linear system Adm = rm.
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3. Update xm = xm−1 + dm.

7 Convergence of MINRES and GMRES

To analyze the convergence of MINRES and GMRES, we again look at those methods from the per-
spective of polynomial approximation, like we did for CG.

Let Pk = {polynomial p : deg(p) ≤ k, p(0) = 1}. We can say that both methods find
x(k) = q(A)b for some polynomial q of degree (k − 1). We can write down the residual as

rk = b−Ax(k) = [I −Aq(A)]b

Let p(z) = 1− zq(z), then p ∈ Pk and rk = p(A)b. In MINRES and GMRES, we look for p ∈ Pk such
that ‖p(A)b‖2 is minimized. This implies

‖rk‖2
‖b‖2

≤ inf
p∈Pk

‖p(A)‖2 (1)

If we assume A is diagonalizable, then let A = XΛX−1 be the eigen-decomposition,

‖p(A)‖2 ≤ ‖X‖2‖X−1‖2‖p(Λ)‖2 = κ2(X) max
λ∈Λ(A)

|p(λ)|

Here Λ(A) stands for the set of eigenvalues of A. Combine this inequality with Eq. 1, we obtain
the min-max formulation

‖rk‖2
‖b‖2

≤ κ2(X) inf
p∈Pk

sup
λ∈Λ(A)

|p(λ)|

If A is normal (AAT = ATA), in which case X is orthogonal, κ2(X) = 1.

8 Krylov Methods for Eigenvalue Problems

8.1 Introduction
Suppose we have a real symmetric matrix A, and we would like to know its extremal eigenvalues.
One option is to use the power method, but unless there is a significant gap between A’s two highest
eigenvalues, the method converges very slowly. One reason for this slow convergence is that we are
throwing information away at each iteration; by keeping information from past iterations around,
we can improve the method’s performance. Fortunately, the Lanczos method allows us to use this
information without explicitly storing all vectors (at least on paper; a practical method requires
more bookkeeping than the exact arithmetic implies). The following is described in more detail
in [GVL13].

Let rA(x) denote the Rayleigh quotient, defined as

rA(x) =
xTAx

xTx
, x 6= 0.

It can be shown from the Courant-Fischer Minimax Theorem that the minimum eigenvalue of A
is minx 6=0 rA(x), and the maximum is maxx 6=0 rA(x), in which case x is the associated eigenvec-
tor. To attack this problem, we could restrict our search space to a Krylov subspace, that is,
max06=x∈Kk(A;q1) rA(x) for some arbitrary nonzero q1. Once again, by making the substitution
x(k) = Vky

(k), we can simplify the optimization:

rA(x(k)) = rA(Vky
(k)) =

(Vky
(k))TA(Vky

(k))

(Vky(k))T (Vky(k))
=
y(k)TTky

(k)

y(k)T y(k)
= rTk

(y(k)),

that is, the best approximating maximal or minimal eigenvalue incurred by a vector in the span of
the kth Krylov subspace is the corresponding eigenvalue of the tridiagonal matrix Tk.

It can be shown that as k increases towards n, the maximum eigenvalue of Tk increases mono-
tonically towards the maximum eigenvalue of A, reaching equality when k = n. Similarly, the
minimum eigenvalue of Tk decreases monotonically towards the minimum eigenvalue of A.
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In addition, this method converges faster than the power method. Let λ1, . . . , λn denote the
eigenvalues of A in decreasing order, and let θ1, . . . , θk denote the eigenvalues of Tk. Then:

θ1 ≥ λ1 − (λ1 − λn)

(
tan(φ1)

ck−1(1 + 2ρ1)

)2

where cos(φ) = |vT1 x1|, x1 is the eigenvector corresponding to λ1, ck−1 is the Chebychev polynomial
of degree k − 1, and ρ1 = λ1−λ2

λ2−λn
. A similar (and clearly worse) bound can be found for the power

method, which yields an estimate γ1 for the largest eigenvalue at iteration k:

γ1 ≥ λ1 − (λ1 − λn) tan2(φ1)

(
λ2

λ1

)2(k−1)

.

Similar bounds exist for the minimum eigenvalues.
Thus, finding the extremal eigenvalues of the small tridiagonal matrix Tk gives good estimates

of the corresponding eigenvalues of A. In theory, one could run the Lanczos procedure for a number
of iterations, and then reduce Tk to diagonal form, or use other means to obtain the eigenvalue
estimates. In practice, this method is not as accurate as expected.

8.2 Loss of Orthogonality
As hinted in lecture, part of the problem with the Lanczos procedure is that the columns of Vk
are not necessarily mutually orthogonal as the method progresses. It can be shown that, for
i = 1, . . . , k:

|v̂Tk+1v̂i| ≈
|r̂Tk v̂i|+ ε‖A‖2

|β̂k|

where hats denote computed (not mathematically exact) values, v̂i is the ith column of V̂k, ε
is machine precision, and r̂k = Av̂k − α̂kv̂k − β̂k−1v̂k−1 is the residual. Note that this loss of
orthogonality is not an accumulation of error; when |β̂k| is small, the columns of V̂k+1 may lose
orthogonality even if r̂Tk V̂k = 0. If left unchecked, these errors may cause the eigenvalues of T̂k to
significantly differ from those of Tk.

8.3 Practical Considerations
One option is to fall back to the Arnoldi method; that is, each time we calculate a new basis vector
for the Krylov subspace, we orthogonalize it against all basis vectors. This is known as complete
reorthogonalization. While effective, this method requires explicit storage of Vk, and the cost of
adding another basis vector is O(nk); both of these considerations make this method expensive if
n is very large.

An alternative method is known as selective reorthogonalization [PS79]. A brief sketch of the
method follows: It is observed that the error in T̂k can be characterized by a number of Ritz
pairs, {θ̂, ŷ}, where each θ̂ is an eigenvalue of T̂k and the corresponding ŷ ∈ Rn is the matching
eigenvector multiplied by V̂k. We can form a set of so-called “good” Ritz vectors that satisfy
‖Aŷ − θ̂ŷ‖2 ≤

√
ε‖A‖2. Typically, the number of good Ritz vectors needed to represent error due

to loss of orthogonalization is much less than k. Therefore, each time a new Krylov basis vector
vk+1 is computed, it is orthogonalized against each good Ritz vector. Of course, we need to know
when to add a new Ritz vector to our set. We can do this by estimating ‖Ik+1 − V̂ Tk+1V̂k+1‖2
(which, with the right bookkeeping, can be done relatively cheaply); when this value grows too
large, the set of good Ritz vectors can be expanded.
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