
CS 6220 A5

Marcus Lim (mkl65)

P2. Many rectangular matrices from the UF collection of sparse matrices were singular, so �min

would actually be 0. However, to make the problem interesting, I looked for the smallest singular value

above 10��.

Of note, methods 1 and 3 are very similar, as Matlab actually uses method 3 when given a problem for

method 1.

I’ve realized that calling svds(A, 1, 0, options) does not work, as Matlab actually forms matrix C defined

in method 3, and calls eigs on C, but

	
��
�� = 2� < � + �

Hence, C is singular, so 0 is an eigenvalue, and eigs fails. Hence, we need some initial guess other than

0.

Notice that:

Κ
�� =
�max

�min

So for matrices that are not too ill-conditioned, the ratio �max �min⁄ should not be too large, and �max is

easy to find. Hence, I made my initial guess �max and repeatedly try eigs/svds with my guess divided by

10, since we want an eigenvalue correct to a factor of 10. This is repeated until eigs/svds finds an value

that is less than 10�� (my tolerance), so I treat the value before this as ��min. This works for both

methods 1 and 3.

Lastly, I’ve also noticed that method 2 is prone to numerical error, so I came up with method 4 that uses

the estimate from method 2 as an initial guess for method 3. (For details, see code attached.)

For comparison, since the matrices were not too big, I calculated all singular values using dense SVD to

get the actual �min.

The table below shows the UFid and some statistics of the sparse matrix. Values t1 to t4 are the running

times for each method, and E1 to E4 are the ratios of the �min found to the actual �min.

id m n nnz t1 t2 t3 t4 E1 E2 E3 E4 Actual �minminminmin

2066 1485 66 2970 0.08 0.39 0.06 0.45 1.11 0.99 1.06 1.00 6.63

2030 1176 56 2352 0.03 0.20 0.04 0.24 1.09 0.99 1.04 1.00 6.40

1984 1019 60 1513 0.04 0.07 0.03 0.09 1.00 1.00 1.00 1.00 2.17

2061 990 55 1980 0.02 0.16 0.03 0.18 1.12 0.99 1.07 1.00 5.92

12 958 292 1916 0.02 0.07 0.06 0.13 3.20 1.02 2.97 1.01 1.32

Average: 0.04 0.18 0.04 0.22 1.50 1.00 1.43 1.00

Note that the average for the ratios is actually the geometric average.

CS 6220 A5

Marcus Lim (mkl65)

We can see that all methods give �min to within a factor of 10, and the performance of method 1 and

method 3 are very similar. Method 2 gives a better estimate of �min, and the extra step in method 4

improves the estimate.

Code:

function ShowSigmaMinMethods()

s = warning('off');

ufidx = [2066, 2030, 1984, 2061, 12];

minEig = 1e-8;

fprintf('id\tm\tn\tnnz\tt1\tt2\tt3\tt4\t');

fprintf('E1\tE2\tE3\tE4\tActual\n');

options = struct('issym',1,'disp',0,'tol',0.1,'p',2);

for k=1:length(ufidx)

 B = UFget(ufidx(k));

 A = sparse(B.A);

 [m,n] = size(A);

 fprintf('%d\t%d\t%d\t%d\t',ufidx(k),m,n,nnz(A));

 t1 = tic;

 s1 = svds(A, 1, 'L', options);

 guess = s1/10;

 while ~isempty(s1)

 last = s1;

 s1 = svds(A, 1, guess, options);

 s1 = s1(s1>minEig);

 guess = guess/10;

 end

 s1 = last;

 t1 = toc(t1);

 t2 = tic;

 s2 = sqrt(eigs(@(x) A\(x'/A)', n, 1, 'sm', options));

 t2 = toc(t2);

 t3 = tic;

 C = sparse(m+n, m+n);

 C(1:m, m+1:m+n) = A;

 C(m+1:m+n, 1:m) = A';

 s3 = eigs(C, 1, 'LA', options);

 guess = s3/10;

 while ~isempty(s3)

 last = s3;

 s3 = eigs(C, 1, guess, options);

 s3 = s3(s3>minEig);

 guess = guess/10;

 end

 s3 = last;

 t3 = toc(t3);

 t4 = tic;

 C = sparse(m+n, m+n);

CS 6220 A5

Marcus Lim (mkl65)

 C(1:m, m+1:m+n) = A;

 C(m+1:m+n, 1:m) = A';

 guess = s2;

 s4 = eigs(C, 1, guess, options);

 s4 = s4(s4>minEig);

 t4 = toc(t4);

 sigma = (svd(full(A)));

 sigma = min(sigma(sigma>minEig));

 E1 = s1 / sigma;

 E2 = s2 / sigma;

 E3 = s3 / sigma;

 E4 = s4 / sigma;

 fprintf('%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n',...

 t1,t2,t3,t2+t4,...

 E1,E2,E3,E4,...

 sigma);

end

warning(s);

end

