
CS 6220 – HW5/Problem2

by Ivo Boyadzhiev (iib2)

I picked 5 tall and thin (rectangular) matrices from the UF data set. 
Then, I selected only the first 100 columns, which happened to be 
enough for these concrete matrices to have a full-column basis (in 
Matlab's working precision).

1. Using svds in the mode of searching for the smallest singular 
value did not work, because of the intermediate representation 
that this algorithms uses internally. It actually creates the same 
matrix as in case 3: C = [0 A; AT 0], which always has 0 as an 
eigenvalue, because of the fact that A is rectangular (n > m), 
which makes C rank deficient (n + m > 2 * m).

2. Searching for the smallest eigenvalue of  B = ATA  worked 
much better, as this matrix (B) has full rank (this comes from 
the fact that A has full column rank ).

Running eigs(B) is very efficient, as it boils down to a bunch of 
matrix-vector multiplications of the kind (A' * (A * x)), which 
is very fast operation when A is sparse. We can run eigs(B) in 
the mode of searching for the “Smallest Algebraic” eigenvalue, 
because B, as defined above, is symmetric positive definite 
matrix. The implication of this is that all its eigenvalues are 
positive, so the smallest in magnitude will be the same as the 
smallest algebraic.

3. As svds uses this representation internally, we have the same 
situation as in 1. I want to notice here that we can use this form 
explicitly to gain efficiency if we have a structure in A that we 



can exploit by providing our own routine for solving linear 
equations of the form (A – sigma * I) * x = b.

As case 1 and 3 are basically the same (in our case we don't exploit 
structure in A, as they are randomly selected from the UF data set), I 
will explain my idea for only one of them.

We know that eigs can go after internal eigenvalues, if we provide an 
initial guess (through the sigma parameter). Therefore, my idea is to 
step through the possible values starting from the largest one, which 
we can easily find (applying the power method for example). As we 
are interested in the smallest positive eigenvalue, within a factor of 
10 of the true one, we can efficiently search the space by 
exponentially decreasing the region of interest (until we reach 
sufficiently close to 0 value).

The result of my experiments are summarized in the following table 
(all matrices are clamped to 100 columns and time is given in 
seconds):

Matrix (903) Matrix (1881) Matrix 
(2031)

Matrix (2186) Matrix (2218)

Rows (71952) Rows (1977885) Rows 
(11760)

Rows 
(12360060)

Rows 
(1748122)

Case1 Time 1.34 22.43 0.10 220.89 9.67

Result 0.009 0.12 6.33  0.24 6.50

Case2 Time 0.48 0.3 0.009 6.87  0.17

Result 0.009 0.12 4.90 0.24 2.94
Case3 Time 0.96 18.14 0.08 179.19 8.09

Result 0.009 0.12 6.33 0.24 6.50



Conclusions:

We can see that case 2 has the fastest timing, and all other produced 
results  that are within a factor of 10 from the true value (case 2), but 
with higher timing. Though case 1 and 3 produced the same results, 
svds seems slower than mine custom implementation of the same 
idea, so they might be doing more work than needed there. I want to 
notice that if we have a good initial estimation of the smallest 
eigenvalue, case 1 and 3 can be as efficient (we don't have to 
iteratively search for the shift). Though in case 2 we only invoke 
matrix-vector multiplications (regarding A), where on the other hand 
for cases 1 and 3 we need to solve linear systems involving  A – 
sigma * I. 

There are situations where case 1 (or 3) might be preferable, and 
those are the cases where the smallest and the second smallest 
eigenvalue of ATA are very close to each other, which will make the 
convergence rate of case 2 very slow. Another problem of going 
through  ATA is that it can “destroy” info for the small eigenvalues, 
but I did not observe that in my tests.

The code of the script follows:

function [] = ShowSigmaMinMethods()
numSamples = 5;
 
% Define the searching criteria
minNumRows = 3000; % We want big sparse matrices
rowsColsRatio = 0.1; % We want tall and thin matrices
maxNumCols = 100;
ratioTol = 10; % The allowed tollerance
 
index = UFget; % get index of the UF Sparse Matrix Collection 
 
% Find all SPD matrices, that meet the defined criterias



allIds = find (index.nrows > minNumRows & ...
    index.ncols  <= index.nrows * rowsColsRatio);
    
% Select the 1st numSamples of them
spdIndices = allIds(1:numSamples);
 
for i=spdIndices
    Problem = UFget(i);    
    
    fprintf('**************** New Matrix (%d) ****************', i);    
    
    % Get the matrix, which will be in sparse format..
    A = Problem.A;    
         
    % Get the first few columns of A, so that we will increase the
    % chance of having full-column rank matrix
    A = A(:, 1:maxNumCols);
           
    [n, m] = size(A)
        
    %fprintf('Size of A(%d) = [%d %d], nnz(A) = %d\n', i, n, m, nnz(A));    
        
    % 1st: Compute smallest eval of the SPD matrix A'*A    
    EIGS_OPTS.issym = true;
    EIGS_OPTS.isreal = true;
    EIGS_OPTS.tol = 1e-10;
    
    tic
    s1 = eigs(@(x) (A' * (A * x)), m, 1, 'SA', EIGS_OPTS);    
    s1 = sqrt(s1)
    toc
    
     % 2nd: Compute smallest singular value, using SVDS
     
    % We will use the largest eval (which is an easier problem), 
    % as an initial starting value, during the iteration search
    s_max = svds(A, 1);
    
    tic
    s2 = EstimateSmallestEvalUsingSvds(A, s_max, ratioTol)
    toc
    
    abs(s2 – s1) / s1
    
    % 3rd: Compute the smallest positive eval of [0 A; A' 0]     
    
    B = [sparse(n, n), A; A', sparse(m, m)];
       
    tic
    s3 = EstimateSmallestEvalUsingB(B, s_max, ratioTol)
    toc
    
    abs(s3 – s1) / s1
end
end
 



function [sigma] = EstimateSmallestEvalUsingSvds(A, b, ratio_tol)        
    SVDS_OPTS.tol = 1e-10;
        
    % With step factor of ratio_tol, search for the smallest positive 
    % singular value of A
    curr_sigma = b;
    while curr_sigma > SVDS_OPTS.tol
        sigma = curr_sigma;
        curr_sigma = svds(A, 1, b, SVDS_OPTS);    
        
        b = b / ratio_tol;
    end         
end
 
% Estimates the smallest positive eval using SVDS + shifts and exponentially 
% decreasing search on the shift parameter.
function [sigma] = EstimateSmallestEvalUsingB(B, b, ratio_tol)    
    EIGS_OPTS.issym = true;
    EIGS_OPTS.isreal = true;
    EIGS_OPTS.tol = 1e-10;
            
    % With step factor of ratio_tol, search for the smallest positive 
    % singular value of A
    curr_sigma = b;
    while curr_sigma > EIGS_OPTS.tol
        sigma = curr_sigma;
        curr_sigma = eigs(B, 1, b, EIGS_OPTS); 
        
        b = b / ratio_tol;
    end
end


