
CS 6210: Homework 4
Instructor: Anil Damle
Due: October 30, 2023

Policies

You may discuss the homework problems freely with other students, but please refrain from looking
at their code or writeups (or sharing your own). Ultimately, you must implement your own code
and write up your own solution to be turned in. Your solution, including plots and requested
output from your code should be typeset and submitted via the Gradescope as a pdf file. Addition-
ally, please submit any code written for the assignment. This can be done by either including it
in your solution as an appendix, or uploading it as a zip file to the separate Gradescope assignment.

Question 1:

Assume that we are using a stationary iterative method to solve Ax = b with the splitting
A = M − N and initial guess x(0), and that x(1), . . . , x(k) have been computed using the itera-
tion Mx(j+1) = Nx(j) + b. Normally we would consider x(k) as our current approximation of the
solution. However, maybe there is some process that allows us to accelerate the convergence of our
method and draw an interesting connection to Krylov subspace methods.

Let’s consider one approach to accomplishing this goal. Specifically, we would like to construct

coefficients {v(k)j }kj=1 for each iteration k such that

y(k) =

k∑
j=0

v
(k)
j x(j)

gives a better approximation to our true solution, denoted x. Let us define G = M−1N and

pk(z) =
k∑

j=0

v
(k)
j zj

(a) Assuming x(0) = 0, is y(k) consistently part of a Krylov subspace? If so, which Krylov
subspace? (By consistently, I mean can you define a matrix H and vector w that do not
depend on k such that y(k) ∈ Kk(H,w).)

(b) Now, let us further assume that pk(1) = 1. Prove that

y(k) − x = pk (G) e(0)

(c) Prove that if B is similar to a Hermitian matrix then

ρ(pk(B)) = max
λi∈λ(B)

|pk(λi)|

where ρ(pk(B)) is the spectral radius of pk(B).

1

We now assume that the iteration matrix G is similar to a Hermitian matrix and has real eigenvalues
λ1, . . . , λn. Recall that for convergence (from any initial guess) we require that

−1 < λn ≤ λ1 < 1.

Moreover, let α and β be such that

−1 < α ≤ λn ≤ · · · ≤ λ1 ≤ β < 1.

(d) Since we may write ∥y(k) − x∥ = ∥pk(G)e(0)∥, what choice of pk would give us zero error? Is
such a choice feasible?

Since we may write
max

λi∈λ(B)
|pk(λi)| ≤ max

α≤λ≤β
|pk(λ)|,

it seems reasonable to pick pk to be small on the interval [α, β]. The ideal choice, given the constraint
on pk(1), is a scaled and shifted version of the kth Chebyshev polynomial. These polynomials may be
defined by the recursion cj(z) = 2zcj−1(z)− cj−2(z) where c0(z) = 1 and c1(z) = z. Alternatively,
we may write cj(z) = cos (jθ) where θ = arccos (z). Specifically, we may choose our polynomial to
be

pk(z) =
ck

(
−1 + 2 z−α

β−α

)
ck(µ)

,

where µ = 1 + 2 1−β
β−α . You can verify that pk(1) = 1. Notably, ck(z) has the property that it is

bounded between −1 and 1 in the interval [−1, 1], but then grows rapidly outside of this interval.
So, in the formula above, ck(µ) becomes large as k → ∞. With the chosen scaling we ensure that
p(z) is small in the interval [α, β] while satisfying p(1) = 1.

(e) Given the above choice for pk(z) prove that there exists a constant C such that

∥y(k) − x∥2 ≤ C

(
1

ck(µ)

)
∥x− x(0)∥2,

where C may depend on the matrix G.

(f) Let α = −0.9 and β = 0.9. Plot ck(µ), on a logarithmic scale, for k = 0, 1, . . . , 100.

We will now consider using this acceleration method in conjunction with the Jacobi iteration. For
the remainder of this problem assume that A is a real symmetric matrix that is strictly diagonally
dominant and has positive diagonal entries.

(g) Under the aforementioned assumptions, prove that the iteration matrix associated with A is
similar to a Hermitian matrix.

(h) Implement the Jacobi method both with and without Chebyshev acceleration. You can
find pseudo-code in Golub and Van Loan 4th edition, section 11.2.8 (3rd edition, section
10.1.5) that leverages the three-term recurrence for Chebyshev polynomials for an efficient
implementation.

Build some non-singular test problems via matrices A, and vectors x(0) and b where the
eigenvalues of G approach ±1. You may use a built in routine to compute eigenvalues and
set the eigenvalue bounds as α = (−1 + λn)/2 and β = (1 + λ1)/2. Use your algorithm both

2

with and without the acceleration to solve Ax = b. You may stop your algorithm when the 2
norm of the residual is less than 10−6 or you have run 1000 iterations. Provide error plots,
on a logarithmic scale, of the 2 norm of the residual vs iteration both with and without the
acceleration. Comment on your observations.

(i) How does the scheme here relate to our discussion of Krylov methods?

Question 2 (ungraded but interesting; we used this result in class):

Here we will characterize the behavior of Ak in terms of its spectral radius.

(a) Prove that if ρ(A) < 1 then there exists a sub-multiplicative matrix norm ∥ · ∥ such that
∥A∥ < 1. Hint: start with the Schur decomposition and note that for any non-singular matrix
S and norm ∥ · ∥, ∥A∥S = ∥S−1AS∥ is also a norm.

(b) Given A ∈ Rn×n, a matrix norm ∥ · ∥, and some ϵ > 0 prove that there exist constants α
(depending on the norm) and βA,ϵ (depending on A, the norm, and ϵ) such that

αρ(A)k ≤ ∥Ak∥ ≤ βA,ϵ(ρ(A) + ϵ)k.

Question 3:

We are now going to consider some details about how Krylov methods behave in specific situations.

(a) Given a symmetric positive definite matrix A and vector b, prove that if the Lanczos process
breaks down at some point (i.e. βk = 0 using the notation from class and Trefethen and Bau)
then the subspace Kk(A, b) contains a solution to the linear system Ax = b. In principle we
might be worried that if βk = 0 things have gone horribly wrong since we cannot construct
the next vector in our orthonormal basis. However, this result shows that in this context
everything has actually gone remarkably well.

(b) Given a non-singular diagonalizable matrix A with at most p distinct eigenvalues and a vector
b, show that a solution to Ax = b exists inKk(A, b) for some k ≤ p. In other words, we certainly
have a solution in the pth Krylov subspace, though we may find one sooner in some special
circumstances.

Question 4:

Here, we will consider the applicability of Krylov methods to solving a set of closely related linear
systems. Specifically, we are given a real symmetric n × n matrix A and a set of M real numbers
{σi}Mi=1 (you may assume none of the σi are eigenvalues of A), and we want to solve the set of M
linear systems

(A− σiI)xi = b

for {xi}Mi=1. You may assume we do not have any reason to use an initial guess besides 0⃗ for all of
the given linear systems.

Devise a Krylov subspace based iterative method to “simultaneously” solve this collection of linear
systems in the sense that you construct M sequences of iterates each with the property that

x
(k)
i → (A− σi)

−1 b as k → ∞. In addition, your algorithm must satisfy the following properties:

3

• Use no more than one matrix vector product with A at each iteration. A single iteration

constitutes computing x
(k)
i for i = 1, . . . ,M.

• Converge (in exact arithmetic) for any σi that is not an eigenvalue of A and converge in at
most ℓ iterations for every i if A has ℓ distinct eigenvalues.

• Have a storage cost that is näıvely O(Mnk) and computational complexity per iteration
that is näıvely Tmult(A) + O(Mnk) + O(Mk3), but can be improved to O(Mn) + O(Mk)
and Tmult(A) + O(Mn) respectively. You do not have to work out all the details on the
improvement, but you do have to make a convincing argument that such an improvement is
possible.

Given this problem and set of requirements address the following:

(a) State your algorithm for addressing the above problem and prove why it satisfies the desired
criteria. Be sure to both clearly articulate your final algorithm and provide the desired proofs.

(b) Let’s say we are given a set of non-singular real symmetric preconditioners M−1
i ≈ (A− σi)

−1

and their Cholesky factorizations M−1
i = LiL

T
i . Do you think that these preconditioners can

be incorporated into your algorithm without adversely impacting its computational benefits
(i.e. could you devise an algorithm that is faster than solving theM problems independently)?
Why or why not?

4

