
CS 6210: Homework 3
Instructor: Anil Damle
Due: September 27, 2023

Policies

You may discuss the homework problems freely with other students, but please refrain from looking
at their code or writeups (or sharing your own). Ultimately, you must implement your own code
and write up your own solution to be turned in. Your solution, including plots and requested
output from your code should be typeset and submitted via the Gradescope as a pdf file. Addition-
ally, please submit any code written for the assignment. This can be done by either including it
in your solution as an appendix, or uploading it as a zip file to the separate Gradescope assignment.

Question 1:

Implement LU factorizations with no, partial, and complete pivoting for A ∈ Rn×n. Then use your
code to address the following:

(a) Demonstrate that your implementations can accurately solve well-conditioned square non-
singular linear systems Ax = b given A and b, and scales as O(n3). Clearly outline how you
test this and include your results.

(b) Construct test cases where omitting any pivoting yields solutions with large relative residuals,
and demonstrate this happens using your code.

(c) Construct a test case where partial pivoting fails to yield a good solution but complete pivoting
does, and demonstrate this happens using your code. Such examples exist, but are typically
considered pathological and “rare” enough that simply using LU with partial pivoting (despite
its poor worst case theoretical performance) is fine in practice.1

(d) Consider computing the LU factorization (all three ways) of the so-called Hilbert matrix of
size n (defined as Hij = 1/(i+ j−1) for i, j = 1, . . . , n). For moderate n what do you observe
about ∥LU − H∥2 (adding permutation matrices as applicable)? What about the accuracy
of a solution to Hx = b as quantified by the relative residual? Explain your observations.

(e) Since the Hilbert matrix H is symmetric positive definite (this is a fun proof to try if you are
so inclined), presumably it would be natural to use a Cholesky decomposition rather than
an LU factorization. Repeat the previous problem using a built-in Cholesky decomposition
routine (or implement it yourself if you like). What do you observe?

1One way to accomplish this is to appeal to the matrices that realize the worst case growth factor for LU with
partial pivoting—they can be found in most of the textbooks listed for this course.

1



Question 2 (ungraded, but interesting):

In class we saw a backwards stability style result for pivoted LU factorization that incorporated the
growth factor ρ. You may have noticed that we did not see any forward error results, i.e., we never
said anything about L̃− L or Ũ − U. In fact, the forward error can be quite large. However, often
what we ultimately care about is the solution to Ax = b. Devise a backwards error bound for solving
Ax = b with non-singular A using LU with partial pivoting followed by a sequence of triangular
solves.2 Your bound should explicitly incorporate the growth factor ρ. For this problem you may
assume that in exact arithmetic there are no ties in the pivoting procedure and µ is sufficiently
small such that the computed permutation matches the exact one.

One reason this problem is ungraded is that it has a very subtle point burried within it. While
the goal of this question is for you to see how backwards error results can be “chained” together
to get a result for the solution to the linear system, it requires bounds on ∥L̃∥ and ∥Ũ∥/∥A∥.

In class we saw that when using partial pivoting we can ensure ∥L∥ = O(1) because all of the
entries have magnitude bounded by 1. For L̃ we can make a similar argument, though formally
the easiest path is to ensure all the entires have magnitude less than 1 + µ (which does not really
change anything).

Unfortunately, bounding ∥Ũ∥/∥A∥ is more complex. In particular we (like many, but not all,
books) defined the growth factor in terms of the exact U. Therefore, it is slightly delicate to use
it in directly bounding ∥Ũ∥/∥A∥. For the purposes of this problem it suffices to derive a bound in
terms of both the “exact” growth factor ρ and a computed growth factor ρ̃ (defined as the growth
factor realized by Ũ).

For those interested, this is actually a rather annoying sticking point in the analysis of these
algorithms, and I am certainly happy to discuss it further. For example, to quote Higham (Accu-
racy and Stability of Numerical Algorithms; Section 9.3, page 165) when providing a theorem on
backward error for solving Ax = b via partially pivoted LU (Note, that in this book L̂ and Û are
the computed LU factors):

“We hasten to admit to using an illicit manoeuvre in the derivation of this theorem: we
have used bounds for L̂ and Û that strictly are valid only for the exact L and U .”

Higham goes on to comment (Accuracy and Stability of Numerical Algorithms; Section 9.14, page
189):

“The dilemma of whether to define the growth factor in terms of exact or computed
quantities is faced by all authors; most make one choice or the other, and go on to
derive, without comment, bounds that are strictly incorrect.”

So, there you have that.

2The computed solution x̃ solves a linear system (A+ δA)x̃ = b, what can you say about ∥δA∥/∥A∥?

2


