Homework 6, CS 6210, Fall 2020

Instructor: Austin R. Benson

Due December, 4, 2020 at 10:19am ET on CMS (before lecture)

Policies

Collaboration. You are encouraged to discuss and collaborate on the homework, but you have to write up your own solutions and write your own code.

Programming language. You can use any programming language for the coding parts of the assignment. Code snippets that we provide and demos in class will use Julia.

Typesetting. Your write-up should be typeset with LaTeX. Handwritten homeworks are not accepted.

Submission. Submit your write-up as a single PDF on CMS: https://cmsx.cs.cornell.edu.

Problems

1. Lanczos termination.

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and $b \in \mathbb{R}^n$. Let $AQ_k = Q_{k+1}\bar{T}_k$ denote the Lanzcos recurrence, as in class. Following the notation in class, let β_k be the entry of \bar{T}_k in the last row and last column. Let ℓ be the first index k such that $\beta_k = 0$.

- (a) Show that if A is nonsingular, then $A^{-1}b \in K_{\ell}(A,b)$.
- (b) Show that if A has at most p distinct eigenvalues, then $\ell \leq p$.
- (c) Show that if A is nonsingular, then $A^{-1}b \in K_n(A, b)$.
- 2. That norm from class is a norm.

Let M be symmetric positive definite. Show that the function $\|\cdot\|_M \colon \mathbb{R}^n \to \mathbb{R}$ given by $\|x\|_M = \sqrt{x^T M x}$ is a norm.

3. More CG equivalences.

Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite and $b \in \mathbb{R}^n$. In class, we showed that the kth CG iterate can be interpreted as solving the optimization problems

minimize
$$||Ax - b||_{A^{-1}}$$
 subject to $x \in K_k(A, b)$

or

minimize
$$\frac{1}{2}x^TAx - b^Tx$$
 subject to $x \in K_k(A, b)$.

(a) Show that another equivalent formulation is

minimize
$$||A^{-1}b - x||_A$$
 subject to $x \in K_k(A, b)$.

(b) Show that another equivalent formulation is

any x subject to
$$x \in K_k$$
 and $Ax - b \perp K_k(A, b)$.

4. Numerical experiments.

- (a) Implement the three-term recurrence Lanczos algorithm for generating an orthonormal basis for $K_k(A, b)$. Show that the generated vectors can be far from orthogonal.
- (b) For this part, we will numerically examine an extension to the result in 1b. Implement a method that generates a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ with $p \ll n$ "clusters" of eigenvalues, where all n eigenvalues are distinct but each is near one of p points. Approximately solve linear systems with a library implementation of CG to show that as the eigenvalues become "more clustered" (more concentrated around the p points), convergence is typically better.