
Bindel, Fall 2019 Matrix Computation

2019-11-25

1 Conjugate gradients
We now turn to the method of conjugate gradients (CG), perhaps the best
known of the Krylov subspace solvers. The CG iteration can be characterized
as the iteration for a symmetric positive definite A that minimizes the energy

ϕ(x) =
1

2
xTAx− xT b

over a Krylov subspace; as we have already seen,

ϕ(x) +
1

2
bTA−1b =

1

2
∥x− A−1b∥2A =

1

2
∥Ax− b∥2A−1 ,

so this minimization corresponds to minimizing the error in the A-norm or the
residual in the A−1 norm. We also have seen the shape of the standard error
analysis, which involves looking at a Chebyshev polynomial on an interval
containing the spectrum. The iteration turns out to be forward unstable, so
the behavior in floating point arithmetic is not the same as the behavior in
theory; but this does not prevent the iteration from being highly effective,
partly because we can write the iteration in a form that involves an explicit
residual, and looking at a freshly-computed residual gives the method a self-
correcting property.

Our goal for today is to look at the mechanics of the method.

1.1 CG via Lanczos
Last time, we discussed the Lanczos iteration, which produces the Lanczos
decomposition

AQk = Qk+1T̄k

via the iteration
βkqk+1 = Aqk − αkqk − βk−1qk−1

where αk = qTk Aqk. One of the simplest derivations for the conjugate gradient
(CG) method is in terms of the Lanczos decomposition.

In terms of the energy

ϕ(x) =
1

2
xTAx− xT b,



Bindel, Fall 2019 Matrix Computation

the problem of finding the “best” (minimum energy) approximate solution
in the space becomes

minimize ϕ(Qkyk) =
1

2
yTk Tkyk − yTk e1∥b∥,

which is solved by
Tkyk = e1∥b∥.

Now let us suppress the indices for a moment and write T = LU (which
can be computed stably without pivoting, as T is SPD). Then we can write
the approximate solution x̂ as

x̂ = QU−1L−1e1∥b∥,

which we will group as

x̂ = V ŷ, V U = Q, Ly = e1∥b∥.

Solving the system for y by forward substitution yields

y1 = ∥b∥
yk = −lk,k−1yk−1.

Similarly, we can compute the columns of V by forward substitution:

v1 = q1/u11

vk =
1

ukk

(qk − vk−1uk−1,k) .

The advantage of this formulation is that if we extend the Krylov subspace,
we simply extend the tridiagonal (and associated factorization), add another
component to y, and bring in a new vector v — all without disturbing the
computations done before. Hence, we have a sequence of coupled recurrences
for the columns of Q and of V that allow us to incrementally update the
solution at the cost of a matrix-vector multiply and a constant amount of
vector arithmetic per step.

This is a useful approach, but it does not shed much insight into how the
method could be extended to optimize more general objectives than quadrat-
ics. For that, we need the approach that gives the CG method its name.



Bindel, Fall 2019 Matrix Computation

1.2 Another approach to CG
An alternate approach to the conjugate gradient method does not directly
invoke Lanczos, but instead relies on properties that must be satisfied at
each step by the residual rm = b − Axm and the update dm = xm+1 − xm.
We assume throughout that xm is drawn from Km(A, b), which implies that
rm ∈ Km+1(A, b) and dm ∈ Km+1(A, b).

First, note that rm ⊥ Km(A, b) and dm ⊥A Km(A, b).1 The former state-
ment comes from the Galerkin criterion in the previous section. The latter
statement comes from recognizing that rm+1 = Adm + rm ⊥ Km(A, b); with
Galerkin condition rm ⊥ Km(A, b), this means Adm ⊥ Km(A, b). Together,
these statements give us rm and dm to within a scalar factor, since there is
only one direction in Km+1(A, b) that is orthogonal to all of Km(A, b), and
similarly there is only one direction that is A-orthogonal. This suggests the
following idea to generate the sequence of approximate solutions xk:

1. Find a direction pk−1 ∈ Kk(A, b) that is A-orthogonal to Kk−1(A, b).

2. Compute xk = xk−1 + αkpk−1 so that

rk = rk−1 − αkApk−1 ⊥ rk−1,

i.e. set αk = (rTk−1rk−1)/(p
T
k−1Apk−1). Orthogonality to the rest of

Kk(A, b) follows automatically from the construction.

3. Take rk ∈ Kk+1(A, b) and A-orthogonalize against everything in Kk(A, b)
to generate the new direction pk. As with the Lanczos procedure, the
real magic in this idea is that we have to do very little work to generate
pk from rk. Note that for any j < k−1, we have pTj Ark = (Apj)

T rk = 0,
because Apj ∈ Kj+2(A, b) ⊂ Kk(A, b) is automatically orthogonal to rk.
Therefore, we really only need to choose

pk = rk + βpk−1,

such that pTk−1Apk, i.e. βk = −(pTk−1Ark)/(p
T
k−1Apk−1). Note, though,

that Apk−1 = −(rk − rk−1)/αk; with a little algebra, we find

βk = − rTk Apk
pTk−1Apk−1

=
(rTk rk)/αk

rTk−1rk−1/αk

=
rTk rk

rTk−1rk−1

.

1 u ⊥A v means u and v are orthogonal in the A-induced inner product, i.e. uTAv = 0.



Bindel, Fall 2019 Matrix Computation

Putting everything together, we have the following coupled recurrences
for the solutions xk, residuals rk, and search directions pk:

αk = (rTk−1rk−1)/(p
T
k−1Apk−1)

xk = xk−1 + αkpk−1

rk = rk−1 − αkApk−1

βk = (rTk rk)/(r
T
k−1rk−1)

pk = rk + βkpk−1.

The sequences rk and pk respectively form orthogonal and A-orthogonal bases
for the nested Krylov subspaces generated by A and b.

1.3 Preconditioning
What happens if we want to compute not on the space Kk(A, b), but the
preconditioned space Kk(M

−1A,M−1b) where M is some symmetric positive
definite matrix? Unfortunately, we cannot apply CG directly to a system
involving M−1A, since even if M and A are SPD, the product will generally
not be. On the other hand, we can certainly work with the related system

(M−1/2AM−1/2)(M1/2x) = M−1/2b.

This is a symmetric positive definite system, and the eigenvalues of M−1/2AM−1/2

are the same as the generalized eigenvalues of the pencil (A,M). Moreover,
we can work with this system implicitly without ever having to form the
awkward square root.

Define p̄k = M−1/2pk and r̄k = M1/2rk; then CG iteration on the related
system can be rephrased as

αk = (r̄Tk−1M
−1r̄k−1)/(p̄

T
k−1Ap̄k−1)

xk = xk−1 + αkp̄k−1

r̄k = r̄k−1 − αkAp̄k−1

βk = (r̄Tk M
−1r̄k)/(r̄

T
k−1M

−1r̄k−1)

p̄k = M−1r̄k + βkp̄k−1.

Because expressions involving M−1 and the residual appear throughout, we



Bindel, Fall 2019 Matrix Computation

introduce a new variable zk = M−1rk, leading to

αk = (r̄Tk−1zk−1)/(p̄
T
k−1Ap̄k−1)

xk = xk−1 + αkp̄k−1

r̄k = r̄k−1 − αkAp̄k−1

Mzk = rk

βk = (r̄Tk zk)/(r̄
T
k−1zk−1)

p̄k = zk + βkp̄k−1.

Another way of thinking about the preconditioned CG iteration is that
it is ordinary CG, whether thought of in terms of conjugate directions or in
terms of Lanczos, but with a different inner product: the M−1 inner product
on residuals, or the M inner product in the Lanczos procedure.

1.4 Nonlinear CG
One of the advantages of the interpretation of CG in terms of search direc-
tions and residuals is that it generalizes beyond the case of quadratic op-
timization or linear system solving to more general optimization problems.
To derive nonlinear CG, we generalize the quantities in the ordinary CG
iteration in the following way:

• In ordinary CG, we let ϕ be a quadratic energy function. In nonlinear
CG, ϕ is a more general (though ideally convex) objective function.

• In ordinary CG, we have rk = −∇ϕ(xk) = b− Axk. In nonlinear CG,
we take rk = −∇ϕ(xk), though the gradient expression will generally
be more complicated.

• In ordinary CG, we choose a search direction pk = rk + βkpk−1 where
βk = rTk rk/r

T
k−1rk−1. In nonlinear CG, we may use the same formula

(the Fletcher-Reeves formula), or we may choose any number of other
formulas that are equivalent in the quadratic case but not in the more
general case.

• In ordinary CG, once we choose a search direction pk−1, we compute a
step xk = xk−1 + αkpk−1. The αk has the property

αk = argminα ϕ(xk + αpk−1)

In nonlinear CG, we instead use a line search to choose the step size.



Bindel, Fall 2019 Matrix Computation

Like ordinary CG, nonlinear CG iterations can be preconditioned.

1.5 The many approaches to CG
The description I have given in these notes highlights (I hope) how orthogo-
nality of the residuals and A-orthogonality of search directions follows natu-
rally from the Galerkin condition, and how the rest of the CG iteration can
be teased out of these orthogonality relations. However, this is far from the
only way to “derive” the method of conjugate gradients. The discussion given
by Demmel and by Saad (in Iterative Methods for Sparse Linear Systems)
highlights the Lanczos connection, and uses this connection to show the ex-
istence of A-orthogonal search directions. Golub and Van Loan show the
Lanczos connection, but also show how conjugate gradients can be derived
as a general-purpose minimization scheme applied to the quadratic function
ϕ(x). Trefethen and Bau give the iteration without derivation first, and then
gradually explain some of its properties. If you find these discussions con-
fusing, or simply wish to read something amusing, I recommend Shewchuk’s
“Introduction to the Conjugate Gradient Method Without the Agonizing
Pain”.

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

	Conjugate gradients
	CG via Lanczos
	Another approach to CG
	Preconditioning
	Nonlinear CG
	The many approaches to CG


