
Bindel, Fall 2019 Matrix Computation

2019-11-13

1 The need for model problems
Direct methods for solving linear systems and eigenvalue problems are (mostly)
“black box.” We design algorithms that work well for a broad category of
problems with given structural properties; once we understand the structure,
there is often a reasonably routine choice of solvers. Of course, even for direct
methods, it is not entirely true that we get “black box” performance — for
example, the fill in sparse direct factorization methods is highly dependent
on the sparsity structure of the matrix at hand. Nonetheless, users of sparse
solvers can largely leave the details to specialists once they understand the
basic lay of the land.

For the remainder of the semester, we will focus on iterative solvers,
which are a different beast altogether. Iterative solvers produce a sequence
of approximate solutions that (ideally) converge to the true solution to a
linear system or eigenvalue problem. However, the rate of convergence is
highly dependent on both the iterative method and the details of the problem.
Even when we are able to take advantage of a good library of iterative solvers,
there are often a wide variety of methods to choose from and a large number
of parameters that we need to understand and tune to get good performance.

Because iterative methods are more problem-dependent than direct meth-
ods, we will focus our presentation on a set of model problems that exhibit
characteristics common in many problems drawn from physical models. We
will also comment on other types of problem structures as we go along, but
will mostly leave the details to select homework problems.

2 The 1D model problem
It is difficult to say many useful things about the convergence of iterative
methods without looking at a concrete problem. Therefore, we will set the
stage with a very specific model problem: a discretization of the Poisson
equation. We start with the one-dimensional case.

The continuous version of our model problem is a one-dimensional Poisson

Bindel, Fall 2019 Matrix Computation

equation with homogeneous Dirichlet boundary conditions:

−d
2u

dx2
= f for x ∈ (0, 1)

u(0) = 0

u(1) = 0

Let xj = j/(n + 1) for j = 0, 1, . . . , n + 1 be a set of mesh points. We
can approximate the second derivative of u at a point by a finite difference
method:

−d
2u

dx2
(xj) ≈

−u(xj−1) + 2u(xj)− u(xj+1)

h2

where h = 1/(n+1) is the mesh spacing. If we replace the second derivative
in the Poisson equation with this finite-difference approximation, we have a
scheme for computing uj ≈ u(xj):

−uj−1 + 2uj − uj−1 = h2fj for 1 ≤ j ≤ n

u0 = 0

un+1 = 0

We can write this approximation as a matrix equation Tu = h2f , where

T =

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2

Part of what makes this simple Poisson discretization so appealing as

a model problem is that we can compute the eigenvalues and eigenvectors
directly. This is because solving the (T−λ)ψ = 0 is equivalent to considering
the constant coefficient difference equation

ψk+1 − (2− λ)ψk + ψk−1 = 0

subject to the boundary conditions ψ0 = ψn+1 = 0. Solutions to this differ-
ence equation must have the form

ψk = αξk + βξ̄k,

Bindel, Fall 2019 Matrix Computation

where ξ and ξ̄ are the roots of the characteristic polynomial p(z) = z2− (2−
λ)z + 1. For 0 ≤ λ ≤ 4, these roots form a complex conjugate pair, each
with unit magnitude; that is, we can write ξ = exp(iθ) for some θ, and so

ξk = exp(ikθ) = cos(kθ) + i sin(kθ).

Thus, any solution to the difference equation must have the form

ψk = γ cos(kθ) + µ sin(kθ).

Plugging in the boundary conditions, we find that γ = 0, and θ = lπ/(n+1)
for some l. Thus, the normalized eigenvectors of T are zj with entries

zj(k) =

√
2

n+ 1
sin

(
jkπ

n+ 1

)
=

√
2

n+ 1
sin((jπ)xk)

and the corresponding eigenvalues are

λj = 2

(
1− cos

πj

n+ 1

)
.

For j ≪ n, Taylor expansion gives that

λj = h2(πj)2 +O
(
h4(πj)4

)
.

By way of comparison, the continuous Dirichlet eigenvalue problem

−d
2w

dx2
= µw, w(0) = w(1) = 0

has eigenfunctions of the form

wj = sin(jπx), µj = (jπ)2.

Thus, the eigenvectors of h−2T are exactly the sampled eigenfunctions of
−d2/dx2 on [0, 1] with Dirichlet boundary conditions, while the extremal
eigenvalues of h−2T satisfy

h−2λj = µj +O(µ2
jh

2).

Bindel, Fall 2019 Matrix Computation

3 The 2D model problem
The problem with the 1D Poisson equation is that it doesn’t make a terribly
convincing challenge – since it is a symmetric positive definite tridiagonal,
we can solve it in linear time with Gaussian elimination! So let us turn to
a slightly more complicated example: the Poisson equation in 2D. Before
discussing the 2D Poisson equation, though, let us digress to introduce two
useful notations: the vec operator and the Kronecker product.

The vec operator simply lists the entries of a matrix (or an array with
more than two indices) in column-major order; for example,

vec

[
a b
c d

]
=

a
c
b
d

 .
The Kronecker product A⊗B of two matrices is a block matrix where each
block is a scalar multiple of B:

A⊗B =

a11B a12B . . .
a21B a22B . . .

...

The Kronecker product and the vec operation interact with each other as
follows:

(B ⊗ A) vec(C) = vec(ACBT).

The Kronecker product also satisfies the identities

(A⊗B)T = AT ⊗BT

(A⊗B)(C ×D) = (AB)⊗ (CD)

which implies, for example, that the Schur form of a Kronecker product is a
Kronecker product of Schur forms:

(UA ⊗ UB)
∗(A⊗B)(UA ⊗ UB) = TA ⊗ TB.

As one illustrative application of Kronecker products, consider the Sylvester
operator X 7→ AX −XB. Using Kronecker products, we can write this as

vec(AX −XB) = (A⊗ I − I ⊗B) vec(X).

Bindel, Fall 2019 Matrix Computation

Note that if A = UATAU
∗
A and B = UBTBU

∗
B are Schur forms, then

A⊗ I − I ⊗B = (UA ⊗ UB)(TA ⊗ I − I ⊗ TB)(UA ⊗ UB)
∗,

and TA ⊗ I − TB ⊗ I is an upper triangular matrix. This transformation,
followed by a triangular solve, is essentially what you did in problem 3 of
your last homework.

Now let us return to the model 2D Poisson discretization. This is an
approximation to the equation

−∇2u = −
(
∂2u

∂x2
+
∂2u

∂y2

)
= f

for (x, y) ∈ (0, 1)2, with Dirichlet boundary conditions u(x, y) = 0 for |x| = 1
or |y| = 1. If we discretize on a regular mesh with interior points indexed by
1 ≤ i ≤ n and 1 ≤ j ≤ n, we can write the solution as a matrix U . When we
discretize, we have a partial derivative in x corresponding to acting across
columns of U , and a partial derivative in y corresponding to acting across
rows of U . We can write this operation as

TU + UT = h2F,

or as an ordinary matrix equation of dimension N = n2

(T ⊗ I + I ⊗ T) vec(U) = h2 vec(F).

What properties do we have for Tn×n = T ⊗ I + I ⊗ T?

1. Tn×n is symmetric and positive definite.

2. Tn×n is (non-strictly) diagonally dominant.

3. If (zj, λj) are the eigenpairs for T , those for Tn×n are (zj ⊗ zl, λj + λl).

4. The condition number of Tn×n scales like O(h−2).

4 Methods for solving the 2D model problem
Suppose we wanted to solve the 2D model problem in practice. What meth-
ods do we have at our disposal so far? Of course, we have several direct
methods

Bindel, Fall 2019 Matrix Computation

1. We could run Gaussian elimination on Tn×n. This takes time O(N3),
where N = n2.

2. The matrix Tn×n is also a banded matrix with bandwidth n so we could
do band Gaussian elimination at a cost of O(N2n) = O(N2.5).

3. A sparse direct solve using nested dissection ordering runs in O(N1.5).

4. Treating the problem as a Sylvester equation and running Bartels-
Stewart requires O(n3) time to find the eigensystem of T and to trans-
form U and F using the eigenvector matrix; and O(n2) time for the
subsequent (diagonal) linear solve.

5. The eigenvector matrix for T corresponds to a discrete sine transform,
which is closely related to the FFT; and we know the eigenvalues in
closed form. This allows us to reduce the time for Bartels-Stewart to
O(n2 log n) = O(N logN).

In the coming lectures, we turn to a variety of iterative methods. These
methods do not produce an exact answer, but rather produce a sequence
of ever-better approximations to the truth. With appropriate parameter
choices, the time to reduce the error by a constant factor scales like1

Jacobi N2

Gauss-Seidel N2

CG N3/2

SOR N3/2

SSOR with Chebyshev acceleration N5/4

Multigrid N

For both the direct and iterative methods, the more structure we use, the
faster we can go.

1See Table 6.1 of Applied Numerical Linear Algebra by J. Demmel.

	The need for model problems
	The 1D model problem
	The 2D model problem
	Methods for solving the 2D model problem

