
Bindel, Fall 2019 Matrix Computation

2019-10-25

1 Power iteration
In most introductory linear algebra classes, one computes eigenvalues as roots
of a characteristic polynomial. For most problems, this is a bad idea: the
roots of the characteristic polynomial are often very sensitive to changes in
the polynomial coefficients even when they correspond to well-conditioned
eigenvalues. Rather than starting from this point, we will start with another
idea: the power iteration.

Suppose A ∈ Cn×n is diagonalizable, with eigenvalues λ1, . . . , λn ordered
so that

|λ1| ≥ |λ2| ≥ . . . ≥ |λn|.
Then we have A = V ΛV −1 where Λ = diag(λ1, . . . , λn). Now, note that

Ak = (V ΛV −1)(V ΛV −1) . . . (V ΛV −1) = V ΛkV −1,

or, to put it differently,
AkV = V Λk.

Now, suppose we have a randomly chosen vector x = V x̃ ∈ Cn, and consider

Akx = AkV x̃ = V Λkx̃ =
n∑

j=1

vjλ
k
j x̃j.

If we pull out a constant factor from this expression, we have

Akx = λk
1

(
n∑

j=1

vj

(
λj

λ1

)k

x̃j

)
.

If |λ1| > |λ2|, then (λj/λ1)
k → 0 for each j > 1, and for large enough k, we

expect Akx to be nearly parallel to v1, assuming x̃1 ̸= 0. This is the idea
behind the power iteration:

x(k+1) =
Ax(k)

∥Ax(k)∥
=

Akx(0)

∥Akx(0)∥
.

Assuming that the first component of V −1x(0) is nonzero and that |λ1| > |λ2|,
the iterates x(k) converge linearly to the “dominant” eigenvector of A, with
the error asymptotically decreasing by a factor of |λ1|/|λ2| at each step.

There are three obvious potential problems with the power method:

Bindel, Fall 2019 Matrix Computation

1. What if the first component of V −1x(0) is zero?

2. What λ1/λ2 is near one?

3. What if we want the eigenpair (λj, vj) for j ̸= 1?

The first point turns out to be a non-issue: if we choose x(0) at random, then
the first component of V −1x(0) will be nonzero with probability 1. Even if
we were so extraordinarily unlucky as to choose a starting vector for which
V −1x(0) did have a zero leading coefficient, perturbations due to floating point
arithmetic would generally bump us to the case in which we had a nonzero
coefficient.

The second and third points turn out to be more interesting, and we
address them now.

2 Spectral transformation and shift-invert
Suppose again that A is diagonalizable with A = V ΛV −1. The power itera-
tion relies on the identity

Ak = V ΛkV −1.

Now, suppose that f(z) is any function that is defined locally by a conver-
gent power series. Then as long as the eigenvalues are within the radius of
convergence, we can define f(A) via the same power series, and

f(A) = V f(Λ)V −1

where f(Λ) = diag(f(λ1), f(λ2), . . . , f(λn)). So the spectrum of f(A) is the
image of the spectrum of A under the mapping f , a fact known as the spectral
mapping theorem.

As a particular instance, consider the function f(z) = (z − σ)−1. This
gives us

(A− σI)−1 = V (Λ− σI)−1V −1,

and so if we run power iteration on (A − σI)−1, we will converge to the
eigenvector corresponding to the eigenvalue λj for which (λj−σ)−1 is maximal
— that is, we find the eigenvalue closest to σ in the complex plane. Running
the power method on (A − σI)−1 is sometimes called the shift-invert power
method.

Bindel, Fall 2019 Matrix Computation

3 Changing shifts
If we know a shift σ that is close to a desired eigenvalue, the shift-invert power
method may be a reasonable method. But even with a good choice of shift,
this method converges at best linearly (i.e. the error goes down by a constant
factor at each step). We can do better by choosing a shift dynamically, so
that as we improve the eigenvector, we also get a more accurate shift.

Suppose v̂ is an approximate eigenvector for A, i.e. we can find some λ̂
so that

(1) Av̂ − v̂λ̂ ≈ 0.

The choice of corresponding approximate eigenvalues is not so clear, but a
reasonable choice (which is always well-defined when v̂ is nonzero) comes
from multiplying (1) by v̂∗ and changing the ≈ to an equal sign:

v̂∗Av̂ − v̂∗v̂λ̂ = 0.

The resulting eigenvalue approximation λ̂ is the Rayleigh quotient:

λ̂ =
v̂∗Av̂

v̂∗v̂
.

If we dynamically choose shifts for shift-invert steps using Rayleigh quo-
tients, we get the Rayleigh quotient iteration:

λk+1 =
v(k) ∗Av(k)

v(k) ∗v(k)

v(k+1) =
(A− λk+1)

−1v(k)

∥(A− λk+1)−1v(k)∥2
Unlike the power method, the Rayleigh quotient iteration has locally quadratic
convergence — so once convergence sets in, the number of correct digits
roughly doubles from step to step. We will return to this method later when
we discuss symmetric matrices, for which the Rayleigh quotient iteration has
locally cubic convergence.

4 Subspaces and orthogonal iteration
So far, we have still not really addressed the issue of dealing with clustered
eigenvalues. For example, in power iteration, what should we do if λ1 and

Bindel, Fall 2019 Matrix Computation

λ2 are very close? If the ratio between the two eigenvalues is nearly one, we
don’t expect the power method to converge quickly; and we are likely to not
have at hand a shift which is much closer to λ1 than to λ2, so shift-invert
power iteration might not help much. In this case, we might want to relax
our question, and look for the invariant subspace associated with λ1 and λ2

(and maybe more eigenvalues if there are more of them clustered together
with λ1) rather than looking for the eigenvector associated with λ1. This is
the idea behind subspace iteration.

In subspace iteration, rather than looking at Akx0 for some initial vec-
tor x0, we look at Vk = AkV0, where V0 is some initial subspace. If V0 is
a p-dimensional space, then under some mild assumptions the space Vk will
asymptotically converge to the p-dimensional invariant subspace of A asso-
ciated with the p eigenvalues of A with largest modulus. The analysis is
basically the same as the analysis for the power method. In order to actually
compute, though, we need bases for the subspaces Vk. Let us define these
bases by the recurrence

Qk+1Rk+1 = AQk

where Q0 is a matrix with p orthonormal columns and Qk+1Rk+1 represents
an economy QR decomposition. This recurrence is called orthogonal itera-
tion, since the columns of Qk+1 are an orthonormal basis for the range space
of AQk, and the span of Qk is the span of AkQ0.

Assuming there is a gap between |λp| and |λp+1|, orthogonal iteration will
usually converge to an orthonormal basis for the invariant subspace spanned
by the first p eigenvectors of A. But it is interesting to look not only at the
behavior of the subspace, but also at the span of the individual eigenvectors.
For example, notice that the first column qk,1 of Qk satisfies the recurrence

qk+1,1rk+1,11 = Aqk,1,

which means that the vectors qk,1 evolve according to the power method! So
over time, we expect the first columns of the Qk to converge to the dominant
eigenvector. Similarly, we expect the first two columns of Qk to converge
to a basis for the dominant two-dimensional invariant subspace, the first
three columns to converge to the dominant three-dimensional invariant sub-
space, and so on. This observation suggests that we might be able to get
a complete list of nested invariant subspaces by letting the initial Q0 be
some square matrix. This is the basis for the workhorse of nonsymmetric
eigenvalue algorithms, the QR method, to which we shall turn next time.

Bindel, Fall 2019 Matrix Computation

5 Codes
5.1 Basic power iteration

1 % [v,lambda] = power(A, v, maxiter, rtol)
2 %
3 % Run power iteration to compute the dominant eigenvalue of A and
4 % an associated eigenvector. This will fail in general if there are
5 % multiple dominant eigenvalues (e.g. from a complex conjugate pair).
6 %
7 % Inputs:
8 % A: Matrix to be analyzed
9 % v: Start vector (default random)

10 % maxiter: Maximum number of iterations allowed (default 1000)
11 % rtol: Rel residual tolerance for convergence (default 1e-3)
12 %
13 function [v,lambda] = power(A, v, maxiter, rtol)
14

15 % Fill in default parameters
16 if nargin < 2, v = []; end
17 if nargin < 3, maxiter = 1000; end
18 if nargin < 4, rtol = 1e-3; end
19

20 % Start with a random vector by default
21 if isempty(v)
22 v = randn(length(A),1);
23 end
24 v = v / norm(v);
25

26 % Get estimate of 2-norm of A for convergence test
27 normAest = sqrt(norm(A,1) * norm(A,inf));
28

29 % Run the iteration
30 Av = A*v;
31 for k = 1:maxiter
32

33 % Take a power method step and compute Rayleigh quotient
34 v = Av/norm(Av);
35 Av = A*v;
36 lambda = v'*Av;
37

38 % Compute the residual and check vs tolerance
39 r = Av-v*lambda;
40 normr = norm(r);
41 if normr < rtol*normAest,

Bindel, Fall 2019 Matrix Computation

42 return;
43 end
44

45 end
46

47 % If we get here, give a warning
48 warning(...
49 sprintf('Power did not converge (rel resid %e after %d steps)', ...
50 normr/normAest, maxiter));
51

52 end

5.2 Rayleigh quotient iteration

1 % [v,lambda] = rqi(A, sigma, v, maxiter, rtol)
2 %
3 % Run Rayleigh quotient iteration to compute an eigenpair of A.
4 %
5 % Inputs:
6 % A: Matrix to be analyzed
7 % sigma: Initial shift
8 % v: Start vector (default random)
9 % maxiter: Maximum number of iterations allowed (default 1000)

10 % rtol: Rel residual tolerance for convergence (default 1e-8)
11 %
12 function [v,lambda] = rqi(A, lambda, v, maxiter, rtol)
13

14 % Fill in default parameters
15 if nargin < 2, lambda = 0; end
16 if nargin < 3, v = []; end
17 if nargin < 4, maxiter = 1000; end
18 if nargin < 5, rtol = 1e-8; end
19

20 % Start with a random vector by default
21 if isempty(v)
22 v = randn(length(A),1);
23 end
24 v = v / norm(v);
25

26 % Get estimate of 2-norm of A for convergence test
27 normAest = sqrt(norm(A,1) * norm(A,inf));
28 I = eye(length(v));
29

30 % Run the iteration
31 for k = 1:maxiter

Bindel, Fall 2019 Matrix Computation

32

33 % Take a power method step and compute Rayleigh quotient
34 v = (A-lambda*I)\v;
35 v = v/norm(v);
36 Av = A*v;
37 lambda = v'*Av;
38

39 % Compute the residual and check vs tolerance
40 r = Av-v*lambda;
41 normr = norm(r);
42 if normr < rtol*normAest,
43 return;
44 end
45

46 end
47

48 % If we get here, give a warning
49 warning(...
50 sprintf('RQI did not converge (rel resid %e after %d steps)', ...
51 normr/normAest, maxiter));
52

53 end

5.3 Subspace iteration

1 % [v,lambda] = subspace(A, k, V, maxiter, rtol)
2 %
3 % Orthogonal iteration to compute the dominant invariant subspace of A.
4 %
5 % Inputs:
6 % A: Matrix to be analyzed
7 % k: Dimension of subspace
8 % v: Start vector (default random)
9 % maxiter: Maximum number of iterations allowed (default 1000)

10 % rtol: Rel residual tolerance for convergence (default 1e-4)
11 %
12 function [V,L] = subspace(A, k, V, maxiter, rtol)
13

14 % Fill in default parameters
15 if nargin < 2, k = 1; end
16 if nargin < 3, V = []; end
17 if nargin < 4, maxiter = 1000; end
18 if nargin < 5, rtol = 1e-4; end
19

20 % Start with a random vector by default

Bindel, Fall 2019 Matrix Computation

21 if isempty(V)
22 V = randn(length(A),k);
23 end
24 V = V / norm(V);
25

26 % Get estimate of 2-norm of A for convergence test
27 normAest = sqrt(norm(A,1) * norm(A,inf));
28

29 % Run the iteration
30 AV = A*V;
31 for k = 1:maxiter
32

33 % Take a power method step and compute Rayleigh quotient
34 [V,R] = qr(AV,0);
35 AV = A*V;
36 L = V'*AV;
37

38 % Compute the residual and check vs tolerance
39 R = AV-V*L;
40 normR = norm(R, 'fro');
41 if normR < rtol*normAest,
42 return;
43 end
44

45 end
46

47 % If we get here, give a warning
48 warning(...
49 sprintf('Power did not converge (rel resid %e after %d steps)', ...
50 normR/normAest, maxiter));
51

52 end

	Power iteration
	Spectral transformation and shift-invert
	Changing shifts
	Subspaces and orthogonal iteration
	Codes
	Basic power iteration
	Rayleigh quotient iteration
	Subspace iteration

