
Bindel, Fall 2019 Matrix Computation

2019-10-23

1 Similarity transforms
When we talked about least squares problems, we spent some time discussing
the transformations that preserve the Euclidean norm: orthogonal transfor-
mations. It is worth spending a moment now to give a name to the trans-
formations that preserve the eigenvalue structure of a matrix. These are
similarity transformations.

Suppose A ∈ Cn×n is a square matrix, and X ∈ Cn×n is invertible. Then
the matrix XAX−1 is said to be similar to A, and the mapping from A to
XAX−1 is a similarity transformation. If A is the matrix for an operator
from Cn onto itself, then XAX−1 is the matrix for the same operator in a
different basis. The eigenvalues and the Jordan block structure of a matrix
are preserved under similarity, and the matrix X gives a relationship between
the eigenvectors of A and those of XAX−1. Note that this goes both ways:
two matrices have the same eigenvalues and Jordan block structure iff they
are similar.

2 Eigenvalue perturbations: a 2-by-2 illustra-
tion

Consider the matrix
A(ϵ) =

[
λ 1
ϵ λ

]
.

The characteristic polynomial of A(ϵ) is p(z) = z2−2λz+(λ2−ϵ), which has
roots λ ±

√
ϵ. These eigenvalues are continuous functions of ϵ at ϵ = 0, but

they are not differentiable functions. This is a more general phenomenon: an
O(ϵ) perturbation to a matrix with an eigenvalue with multiplicity m usually
splits the eigenvalue into m distinct eigenvalues, each of which is moved from
the original position by O(ϵ1/m). We expect, then, that it will be difficult to
accurately compute multiple eigenvalues of general nonsymmetric matrices
in floating point. If we are properly suspicious, we should suspect that nearly
multiple eigenvalues are almost as troublesome — and indeed they are. On
the other hand, while we usually lose some accuracy when trying to compute



Bindel, Fall 2019 Matrix Computation

nearly multiple eigenvalues, we should not always expect to lose all digits of
accuracy.

The next lecture or two will be spent developing the perturbation theory
we will need in order to figure out what we can and cannot expect from our
eigenvalue computations.

3 First-order perturbation theory
Suppose A ∈ Cn×n has a simple1 eigenvalue λ with corresponding column
eigenvector v and row eigenvector w∗. We would like to understand how
λ changes under small perturbations to A. If we formally differentiate the
eigenvalue equation Av = vλ, we have

(δA)v + A(δv) = (δv)λ+ v(δλ).

If we multiply this equation by w∗, we have

w∗(δA)v + w∗A(δv) = λw∗(δv) + w∗v(δλ).

Note that w∗A = λw∗, so that we have

w∗(δA)v = w∗v(δλ),

which we rearrange to get

(1) δλ =
w∗(δA)v

w∗v
.

This formal derivation of the first-order sensitivity of an eigenvalue only goes
awry if w∗v = 0, which we can show is not possible if λ is simple.

We can use formula (1) to get a condition number for the eigenvalue λ as
follows:

|δλ|
|λ|

=
|w∗(δA)v|
|w∗v||λ|

≤ ∥w∥2∥v∥2
|w∗v|

∥δA∥2
|λ|

= sec θ
∥δA∥2
|λ|

.

where θ is the acute angle between the spaces spanned by v and by w.
When this angle is large, very small perturbations can drastically change
the eigenvalue.

1 An eigenvalue is simple if it is not multiple.
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4 Gershgorin theory
The first-order perturbation theory outlined in the previous section is very
useful, but it is also useful to consider the effects of finite (rather than in-
finitesimal) perturbations to A. One of our main tools in this consideration
will be Gershgorin’s theorem.

Here is the idea. We know that diagonally dominant matrices are nonsin-
gular, so if A − λI is diagonally dominant, then λ cannot be an eigenvalue.
Contraposing this statement, λ can be an eigenvalue only if A − λI is not
diagonally dominant. The set of points where A−λI is not diagonally dom-
inant is a union of sets ∪jGj, where each Gj is a Gershgorin disk:

Gj = Bρj(ajj) =

{
z ∈ C : |ajj − z| ≤ ρj where ρj =

∑
i ̸=j

|aij|

}
.

Our strategy now, which we will pursue in detail next time, is to use similarity
transforms based on A to make a perturbed matrix A + E look “almost”
diagonal, and then use Gershgorin theory to turn that “almost” diagonality
into bounds on where the eigenvalues can be.

We now argue that we can extract even more information from the Ger-
shgorin disks: we can get counts of how many eigenvalues are in different
parts of the union of Gershgorin disks.

Suppose that G is a connected component of ∪jGj; in other words, sup-
pose that G = ∪j∈SGj for some set of indices S, and that G ∩ Gk = ∅ for
k ̸∈ S. Then the number of eigenvalues of A in G (counting eigenvalues
according to multiplicity) is the same as the side of the index set S.

To sketch the proof, we need to know that eigenvalues are continuous
functions of the matrix entries. Now, for s ∈ [0, 1], define

H(s) = D + sF

where D is the diagonal part of A and F = A −D is the off-diagonal part.
The function H(s) is a homotopy that continuously takes us from an easy-
to-analyze diagonal matrix at H(0) = D to the matrix we care about at
H(1) = A. At s = 0, we know the eigenvalues of A are the diagonal elements
of A; and if we apply the first part of Gershgorin’s theorem, we see that the
eigenvalues of H(s) always must live inside the union of Gershgorin disks of
A for any 0 ≤ s ≤ 1. So each of the |S| eigenvalues that start off in the
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connected component G at H(0) = D can move around continuously within
G as we move the matrix continuously to H(1) = A, but they cannot “jump”
discontinuously across the gap between G and any of the other Gershgorin
disks. So at s = 1, there will still be |S| eigenvalues of H(1) = A inside G.

5 Perturbing Gershgorin
Now, let us consider the relation between the Gershgorin disks for a matrix A
and a matrix Â = A+F . It is straightforward to write down the Gershgorin
disks Ĝj for Â:

Ĝj = Bρ̂j(âjj) = {z ∈ C : |ajj + ejj − z| ≤ ρ̂j} where ρ̂j =
∑
i ̸=j

|aij + fij|.

Note that |ajj + ejj − z| ≥ |ajj − z| − |fjj| and |aij + fij| ≤ |aij|+ |fij|, so

(2) Ĝj ⊆ Bρj+
∑

j |fij |(ajj) =

{
z ∈ C : |ajj − z| ≤ ρj +

∑
i

|fij|

}
.

We can simplify this expression even further if we are willing to expand the
regions a bit:

(3) Ĝj ⊆ Bρj+∥F∥1(ajj).

6 The Bauer-Fike theorem
We now apply Gershgorin theory together with a carefully chosen similarity
to prove a bound on the eigenvalues of A+F where F is a finite perturbation.
This will lead us to the Bauer-Fike theorem.

The basic idea is as follows. Suppose that A is a diagonalizable matrix,
so that there is a complete basis of column eigenvectors V such that

V −1AV = Λ.

Then we A+ F has the same eigenvalues as

V −1(A+ F )V = Λ+ V −1FV = Λ+ F̃ .
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Now, consider the Gershgorin disks for Λ+ F̃ . The crude bound (3) tells us
that all the eigenvalues live in the regions∪

j

B∥F̃∥1(λj) ⊆
∪
j

Bκ1(V )∥F∥1(λj).

This bound really is crude, though; it gives us disks of the same radius around
all the eigenvalues λj of A, regardless of the conditioning of those eigenvalues.
Let’s see if we can do better with the sharper bound (2).

To use (2), we need to bound the absolute column sums of F̃ . Let e
represent the vector of all ones, and let ej be the jth column of the identity
matrix; then the jth absolute column sums of F̃ is ϕj ≡ eT |F̃ |ej, which we
can bound as ϕj ≤ eT |V −1||F ||V |ej. Now, note that we are free to choose
the normalization of the eigenvector V ; let us choose the normalization so
that each row of W ∗ = V −1. Recall that we defined the angle θj by

cos(θj) =
|w∗

jvj|
∥wj∥2∥vj∥2

,

where wj and vj are the jth row and column eigenvectors; so if we choose
∥wj∥2 = 1 and w∗

jvj = 1 (so W ∗ = V −1), we must have ∥vj∥2 = sec(θj).
Therefore, ∥|V |ej∥2 = sec(θj). Now, note that eT |V −1| is a sum of n rows of
Euclidean length 1, so ∥eT |V −1|∥2 ≤ n. Thus, we have

ϕj ≤ n∥F∥2 sec(θj).

Putting this bound on the columns of F̃ together with (2), we have the
Bauer-Fike theorem.

Theorem 1 Suppose A ∈ Cn×n is diagonalizable with eigenvalues λ1, . . . , λn.
Then all the eigenvalues of A+ F are in the region∪

j

Bn∥F∥2 sec(θj)(λj),

where θj is the acute angle between the row and column eigenvectors for
λj, and any connected component G of this region that contains exactly m
eigenvalues of A will also contain exactly m eigenvalues of A+ F .
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