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Most of mathematics is best learned by doing. Linear algebra is no ex-
ception. You have had a previous class in which you learned the basics of
linear algebra, and you will have plenty of practice with these concepts over
the semester. This brief refresher lecture is supposed to remind you of what
you’ve already learned and introduce a few things you may not have seen. It
also serves to set notation that will be used throughout the class.

In addition to these notes, you may find it useful to go back to a good
linear algebra text (there are several listed on the course syllabus) or to look
at the linear algebra review chapters in the book.

1 Vectors
A vector space (or linear space) is a set of vectors that can be added or
scaled in a sensible way – that is, addition is associative and commutative
and scaling is distributive. We will generally denote vector spaces by script
letters (e.g. V ,W), vectors by lower case Roman letters (e.g. v, w), and scalars
by lower case Greek letters (e.g. α, β). But we feel free to violate these
conventions according to the dictates of our conscience or in deference to
other conflicting conventions.

There are many types of vector spaces. Apart from the ubiquitous spaces
Rn and Cn, the most common vector spaces in applied mathematics are
different types of function spaces. These include

Pd = {polynomials of degree at most d};
V∗ = {linear functions V → R (or C)};

L(V ,W) = {linear maps V → W};
Ck(Ω) = { k-times differentiable functions on a set Ω};

and many more. We compute with vectors in Rn and Cn, which we represent
concretely by tuples of numbers in memory, usually stored in sequence. To
keep a broader perspective, though, we will also frequently describe examples
involving the polynomial spaces Pd.
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1.1 Spanning sets and bases
We often think of a matrix as a set of vectors

V =
[
v1 v2 . . . vn

]
.

The range space R(V ) or the span sp{vj}nj=1 is the set of vectors {V c : c ∈ Rn}
(or Cn for complex spaces). The vectors are linearly independent if any
vector in the span has a unique representation as a linear combination of the
spanning vectors; equivalently, the vectors are linearly independent if there
is no linear combination of the spanning vectors that equals zero except the
one in which all coefficients are zero. A linearly independent set of vectors
is a basis for a space V if sp{vj}nj=1 = V ; the number of basis vectors n
is the dimension of the space. Spaces like Ck(Ω) do not generally have a
finite basis; they are infinite-dimensional. We will focus on finite-dimensional
spaces in the class, but it is useful to know that there are interesting infinite-
dimensional spaces in the broader world.

The standard basis in Rn is the set of column vectors ej with a one in the
jth position and zeros elsewhere:

I =
[
e1 e2 . . . en

]
.

Of course, this is not the only basis. Any other set of n linearly independent
vectors in Rn is also a basis

V =
[
v1 v2 . . . vn

]
.

The matrix V formed in this way is invertible, with multiplication by V
corresponding to a change from the {vj} basis to the standard basis and
multiplication by V −1 corresponding to a map from the standard basis into
the {vj} basis.

We will use matrix-like notation to describe bases and spanning sets even
when we deal with spaces other than Rn. For example, a common basis for
Pd is the power basis

X =
[
1 x x2 . . . xd

]
.

Each “column” in X is really a function of one variable (x), and matrix-
vector multiplication with X represents a map from a coefficient vector in
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Rd+1 to a polynomial in Pd. That is, we write polynomials p ∈ Pd in terms
of the basis as

p = Xc =
d∑

j=0

cjx
j

and, we think of computing the coefficients from the abstract polynomial via
a formal inverse:

c = X−1p.

We typically think of a map like Y ∗ = X−1 in terms of “rows”

Y ∗ =


y∗0
y∗1
...
y∗d


where each row y∗j is a linear functional or dual vector (i.e. linear map-
pings from the vector space to the real or complex numbers). Collectively,
{y∗0, . . . , y∗d} are the dual basis to {1, x, . . . , xd}.

The power basis is not the only basis for Pd. Other common choices
include Newton or Lagrange polynomials with respect to a set of points,
which you may have seen in another class such as CS 4210. In this class, we
will sometimes use the Chebyshev1 polynomial basis {Tj(x)} given by the
recurrence

T0(x) = 1

T1(x) = x

Tj+1(x) = 2xTj(x)− Tj−1(x), j ≥ 1,

and the Legendre polynomial basis {Pj(x)}, given by the recurrence

P0(x) = 1

P1(x) = x

(j + 1)Pj+1(x) = (2j + 1)xPj(x)− jPj−1(x).

1 Pafnuty Chebyshev was a nineteenth century Russian mathematician, and his name
has been transliterated from the Cyrillic alphabet into the Latin alphabet in several dif-
ferent ways. We inherit our usual spelling from one of the French transliterations, but the
symbol T for the polynomials comes from the German transliteration Tschebyscheff.
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As we will see over the course of the semester, sometimes the “obvious” choice
of basis (e.g. the standard basis in Rn or the power basis in Pd) is not the
best choice for numerical computations.

1.2 Vector norms
A norm ∥ · ∥ measures vector lengths. It is positive definite, homogeneous,
and sub-additive:

∥v∥ ≥ 0 and ∥v∥ = 0 iff v = 0

∥αv∥ = |α|∥v∥
∥u+ v∥ ≤ ∥u∥+ ∥v∥.

The three most common vector norms we work with in Rn are the Euclidean
norm (aka the 2-norm), the ∞-norm (or max norm), and the 1-norm:

∥v∥2 =
√∑

j

|vj|2

∥v∥∞ = max
j

|vj|

∥v∥1 =
∑
j

|vj|

Many other norms can be related to one of these three norms. In partic-
ular, a “natural” norm in an abstract vector space will often look strange in
the corresponding concrete representation with respect to some basis func-
tion. For example, consider the vector space of polynomials with degree at
most 2 on [−1, 1]. This space also has a natural Euclidean norm, max norm,
and 1-norm; for a given polynomial p(x) these are

∥p∥2 =

√∫ 1

−1

|p(x)|2 dx

∥p∥∞ = max
x∈[−1,1]

|p(x)|

∥p∥1 =
∫ 1

−1

|p(x)| dx.

But when we write p(x) in terms of the coefficient vector with respect to the
power basis (for example), the max norm of the polynomial is not the same
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as the max norm of the coefficient vector. In fact, if we consider a polynomial
p(x) = c0 + c1x, then the max norm of the polynomial p is the same as the
one-norm of the coefficient vector — the proof of which is left as a useful
exercise to the reader.

In a finite-dimensional vector space, all norms are equivalent: that is, if
∥·∥ and |||·||| are two norms on the same finite-dimensional vector space, then
there exist constants c and C such that for any v in the space,

c∥v∥ ≤ |||v||| ≤ C∥v∥.

Of course, there is no guarantee that the constants are small!
An isometry is a mapping that preserves vector norms. For Rn, the only

isometries for the 1-norm and the ∞-norm are permutations. For Euclidean
space, though, there is a much richer set of isometries, represented by the
orthogonal matrices (matrices s.t. Q∗Q = I).

1.3 Inner products
An inner product ⟨·, ·⟩ is a function from two vectors into the real numbers
(or complex numbers for an complex vector space). It is positive definite,
linear in the first slot, and symmetric (or Hermitian in the case of complex
vectors); that is:

⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 iff v = 0

⟨αu,w⟩ = α⟨u,w⟩ and ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩
⟨u, v⟩ = ⟨v, u⟩,

where the overbar in the latter case corresponds to complex conjugation. A
vector space with an inner product is sometimes called an inner product space
or a Euclidean space.

Every inner product defines a corresponding norm

∥v∥ =
√
⟨v, v⟩

The inner product and the associated norm satisfy the Cauchy-Schwarz in-
equality

⟨u, v⟩ ≤ ∥u∥∥v∥.
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The standard inner product on Cn is

x · y = y∗x =
n∑

j=1

ȳjxj.

But the standard inner product is not the only inner product, just as the
standard Euclidean norm is not the only norm.

Just as norms allow us to reason about size, inner products let us reason
about angles. In particular, we define the cosine of the angle θ between
nonzero vectors v and w as

cos θ =
⟨v, w⟩
∥v∥∥w∥

.

Returning to our example of a vector space of polynomials, the standard
L2([−1, 1]) inner product is

⟨p, q⟩L2([−1,1]) =

∫ 1

−1

p(x)q̄(x) dx.

If we express p and q with respect to a basis (e.g. the power basis), we find
that we can represent this inner product via a symmetric positive definite
matrix. For example, let p(x) = c0+c1x+c2x

2 and let q(x) = d0+d1x+d2x
2.

Then

⟨p, q⟩L2([−1,1]) =

d0d1
d2

∗ a00 a01 a02
a10 a11 a12
a20 a21 a22

c0c1
c2

 = d∗Ac = ⟨c, d⟩A

where

aij =

∫ 1

−1

xi−1xj−1 dx =

{
2/(i+ j − 1), i+ j even
0, otherwise

The symmetric positive definite matrix A is what is sometimes called the
Gram matrix for the basis {1, x, x2}.

We say two vectors u and v are orthogonal with respect to an inner
product if ⟨u, v⟩ = 0. If u and v are orthogonal, we have the Pythagorean
theorem:

∥u+ v∥2 = ⟨u+ v, u+ v⟩ = ⟨u, u⟩+ ⟨v, u⟩+ ⟨u, v⟩+ ⟨v, v⟩ = ∥u∥2 + ∥v∥2
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Two vectors u and v are orthonormal if they are orthogonal with respect to
the inner product and have unit length in the associated norm. When we
work in an inner product space, we often use an orthonormal basis, i.e. a
basis in which all the vectors are orthonormal. For example, the normalized
Legendre polynomials √

2

2j + 1
Pj(x)

form orthonormal bases for the Pd inner product with respect to the L2([−1, 1])
inner product.

2 Matrices and mappings
A matrix represents a mapping between two vector spaces. That is, if L :
V → W is a linear map, then the associated matrix A with respect to bases
V and W satisfies A = W−1LV . The same linear mapping corresponds
to different matrices depending on the choices of basis. But matrices can
reresent several other types of mappings as well. Over the course of this
class, we will see several interpretations of matrices:

• Linear maps. A map L : V → W is linear if L(x+ y) = Lx+Ly and
L(αx) = αLx. The corresponding matrix is A = W−1LV .

• Linear operators. A linear map from a space to itself (L : V → V) is
a linear operator. The corresponding (square) matrix is A = V −1LV .

• Bilinear forms. A map a : V ×W → R (or C for complex spaces) is
bilinear if it is linear in both slots: a(αu + v, w) = αa(u,w) + a(v, w)
and a(v, αu + w) = αa(v, u) + a(v, w). The corresponding matrix has
elements Aij = a(vi, wj); if v = V c and w = Wd then a(v, w) = dTAc.
We call a bilinear form on V × V symmetric if a(v, w) = a(w, v); in
this case, the corresponding matrix A is also symmetric (A = AT ).
A symmetric form and the corresponding matrix are called positive
semi-definite if a(v, v) ≥ 0 for all v. The form and matrix are positive
definite if a(v, v) > 0 for any v ̸= 0.
A skew-symmetric matrix (A = −AT ) corresponds to a skew-symmetric
or anti-symmetric bilinear form, i.e. a(v, w) = −a(w, v).
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• Sesquilinear forms. A map a : V × W → C (where V and W
are complex vector spaces) is sesquilinear if it is linear in the first
slot and the conjugate is linear in the second slot: a(αu + v, w) =
αa(u,w)+a(v, w) and a(v, αu+w) = ᾱa(v, u)+a(v, w). The matrix has
elements Aij = a(vi, wj); if v = V c and w = Wd then a(v, w) = d∗Ac.
We call a sesquilinear form on V ×V Hermitian if a(v, w) = a(w, v); in
this case, the corresponding matrix A is also Hermitian (A = A∗). A
Hermitian form and the corresponding matrix are called positive semi-
definite if a(v, v) ≥ 0 for all v. The form and matrix are positive definite
if a(v, v) > 0 for any v ̸= 0.
A skew-Hermitian matrix (A = −A∗) corresponds to a skew-Hermitian
or anti-Hermitian bilinear form, i.e. a(v, w) = −a(w, v).

• Quadratic forms. A quadratic form ϕ : V → R (or C) is a homoge-
neous quadratic function on V , i.e. ϕ(αv) = α2ϕ(v) for which the map
b(v, w) = ϕ(v + w) − ϕ(v) − ϕ(w) is bilinear. Any quadratic form on
a finite-dimensional space can be represented as c∗Ac where c is the
coefficient vector for some Hermitian matrix A. The formula for the
elements of A given ϕ is left as an exercise.

We care about linear maps and linear operators almost everywhere, and most
students come out of a first linear algebra class with some notion that these
are important. But apart from very standard examples (inner products and
norms), many students have only a vague notion of what a bilinear form,
sesquilinear form, or quadratic form might be. Bilinear forms and sesquilin-
ear forms show up when we discuss large-scale solvers based on projection
methods. Quadratic forms are important in optimization, physics (where
they often represent energy), and statistics (e.g. for understanding variance
and covariance).

2.1 Matrix norms
The space of matrices forms a vector space; and, as with other vector spaces,
it makes sense to talk about norms. In particular, we frequently want norms
that are consistent with vector norms on the range and domain spaces; that
is, for any w and v, we want

w = Av =⇒ ∥w∥ ≤ ∥A∥∥v∥.
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One “obvious” consistent norm is the Frobenius norm,

∥A∥F =

√∑
i,j

a2ij.

Even more useful are induced norms (or operator norms)

∥A∥ = sup
v ̸=0

∥Av∥
∥v∥

= sup
∥v∥=1

∥Av∥.

The induced norms corresponding to the vector 1-norm and ∞-norm are

∥A∥1 = max
j

∑
i

|aij| (max column sum)

∥A∥∞ = max
i

∑
j

|aij| (max row sum)

The norm induced by the vector Euclidean norm (variously called the matrix
2-norm or the spectral norm) is more complicated.

The Frobenius norm and the matrix 2-norm are both orthogonally invari-
ant (or unitarily invariant in a complex vector space. That is, if Q is a square
matrix with Q∗ = Q−1 (an orthogonal or unitary matrix) of the appropriate
dimensions

∥QA∥F = ∥A∥F , ∥AQ∥F = ∥A∥F ,
∥QA∥2 = ∥A∥2, ∥AQ∥2 = ∥A∥2.

This property will turn out to be frequently useful throughout the course.

2.2 Decompositions and canonical forms
Matrix decompositions (also known as matrix factorizations) are central to
numerical linear algebra. We will get to know six such factorizations well:

• PA = LU (a.k.a. Gaussian elimination). Here L is unit lower triangular
(triangular with 1 along the main diagonal), U is upper triangular, and
P is a permutation matrix.

• A = LL∗ (a.k.a. Cholesky factorization). Here A is Hermitian and
positive definite, and L is a lower triangular matrix.
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• A = QR (a.k.a. QR decomposition). Here Q has orthonormal columns
and R is upper triangular. If we think of the columns of A as a basis,
QR decomposition corresponds to the Gram-Schmidt orthogonalization
process you have likely seen in the past (though we rarely compute with
Gram-Schmidt).

• A = UΣV ∗ (a.k.a. the singular value decomposition or SVD). Here U
and V have orthonormal columns and Σ is diagonal with non-negative
entries.

• A = QΛQ∗ (a.k.a. symmetric eigendecomposition). Here A is Hermi-
tian (symmetric in the real case), Q is orthogonal or unitary, and Λ is
a diagonal matrix with real numbers on the diagonal.

• A = QTQ∗ (a.k.a. Schur form). Here A is a square matrix, Q is
orthogonal or unitary, and T is upper triangular (or nearly so).

The last three of these decompositions correspond to canonical forms
for abstract operators. That is, we can view these decompositions as finding
bases in which the matrix representation of some operator or form is particu-
larly simple. In a first linear algebra course, one generally considers canonical
forms associated with general bases (not restricted to be orthogonal):

• For a linear map, we have the canonical form

A = U−1AV =

[
Ik 0
0 0

]
where k is the rank of the matrix and the zero blocks are sized so the
dimensions make sense.

• For an operator, we have the Jordan canonical form,

J = V −1AV =

Jλ1

Jλ2

. . . Jλr


where each Jλ is a Jordan block with λ down the main diagonal and 1
on the first superdiagonal.
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• For a quadratic form, we have the canonical form

a(V x) =

k+∑
i=1

x2
i −

k++k−∑
i=k++1

x2
i = xTAx, A =

Ik+ −Ik−
0k0

 .

The integer triple (k+, k0, k−) is sometimes called the inertia of the
quadratic form (or Sylvester’s inertia).

As beautiful as these canonical forms are, they are terrible for computa-
tion. In general, they need not even be continuous! However, if V and U have
inner products, it makes sense to restrict our attention to orthonormal bases.
This restriction gives canonical forms that we tend to prefer in practice:

• For a linear map, we have the canonical form

U−1AV =

[
Σk 0
0 0

]
where k is the rank of the matrix and the zero blocks are sized so the
dimensions make sense. The matrix Σk is a diagonal matrix of singular
values

σ1 ≥ σ2 ≥ . . . ≥ σk > 0,

and the bases U and V consist of the singular vectors.

• For an operator, we have the Schur canonical form,

V −1AV = T

where T is an upper triangular matrix (in the complex case) or a quasi-
upper triangular matrix that may have 2-by-2 blocks (in the case of a
real matrix with complex eigenvalues). In this case, the basis vectors
span nested invariant subspaces of A.

• For a quadratic form, we have the canonical form

a(V x) =
n∑

i=1

λix
2
i = xTΛx,

where Λ is a diagonal matrix with λ1, . . . , λn on the diagonal.
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2.3 The SVD and the 2-norm
The singular value decomposition is useful for a variety of reasons; we close
off the lecture by showing one such use.

Suppose A = UΣV ∗ is the singular value decomposition of some matrix.
Using orthogonal invariance (unitary invariance) of the 2-norm, we have

∥A∥2 = ∥U∗AV ∥2 = ∥Σ2∥,

i.e.
∥A∥2 = max

∥v∥2=1

∑
j σj|vj|2∑
|vj|2

.

That is, the spectral norm is the largest weighted average of the singular
values, which is the same as just the largest singular value.

The small singular values also have a meaning. If A is a square, invertible
matrix then

∥A−1∥2 = ∥V Σ−1U∗∥2 = ∥Σ−1∥2,

i.e. ∥A−1|2 is the inverse of the smallest singular value of A.
The smallest singular value of a nonsingular matrix A can also be inter-

preted as the “distance to singularity”: if σn is the smallest singular value of
A, then there is a matrix E such that ∥E∥2 = σn and A+E is singular; and
there is no such matrix with smaller norm.

These facts about the singular value decomposition are worth ponder-
ing, as they will be particularly useful in the next lecture when we ponder
sensitivity and conditioning.
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