Midterm

(due: 2019-10-21)
You may (and should) use any references you wish: books, notes, MatLaB help, literature. But please do not consult with anyone outside the course staff. Templates for the required codes are provided in the class Github repository.

1: Identity plus Consider the matrix $A=I+Z Z^{T}$ where $Z \in \mathbb{R}^{n \times k}$, $k \ll n$.

2 pts Argue that A is symmetric and positive definite.
2 pts Give an $O(n k)$ time algorithm for computing $y=A x$.
2 pts Given an economy SVD $Z=U \Sigma V^{T}$, show how to compute $\kappa_{2}(A)$ cheaply. How cheaply can it be done?

2 pts Given an economy QR decomposition $Z=Q R$, show how to solve $A x=b$ cheaply. How cheaply can it be done?

Please provide both a written description of your approach and code that satisfies the provided interfaces.

2: Daring derivatives Give codes to compute directional derivatives for each of the following

2 pts Differentiate $\|x\|_{M}^{2}$ with respect to changes in x and changes in M (for $M \mathrm{spd})$.

2 pts Differentiate the solution to $\left(I+Z Z^{T}\right) x=b$ with respect to changes in Z and b, given a QR factorization of Z. Your code should require $O\left(n k+k^{3}\right)$ time.

2 pts Differentiate the Cholesky factorization $R^{T} R=M$ (Hint: differentiate the basic relation, then pre- and post-multiply by R^{-T} and R^{-1}, respectively).

Please provide both a written description of your approach and code that satisfies the provided interfaces.

3: Tridiagonal trouble Let T be a positive definite symmetric tridiagonal matrix

$$
T=\left[\begin{array}{cccccc}
\alpha_{1} & \beta_{1} & & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & & \\
& \beta_{2} & \alpha_{2} & \beta_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & \beta_{n-2} & \alpha_{n-1} & \beta_{n-1} \\
& & & & \beta_{n-1} & \alpha_{n}
\end{array}\right]
$$

Assuming the tridiagonal is unreduced (i.e. none of the off-diagonal elements are zero), answer the following questions

2 pts Consider any block 2-by-2 decomposition of $S=T^{-1}$ with square diagonal blocks, and show that S_{12} and S_{21} are rank one.

2 pts Write a code to compute $\left\|T^{-1}\right\|_{1}$ efficiently and exactly (i.e. you should not use a technique like Hager's condition estimator). Please provide both a written description of your approach and code that satisfies the provided interfaces.

4: Conditioning [2 pts] For any operator norm, show that if $\left\|A^{-1} E\right\|<1$ then

$$
\kappa(A+E) \leq \kappa(A)\left(\frac{1+\left\|A^{-1} E\right\|}{1-\left\|A^{-1} E\right\|}\right) \leq \frac{\kappa(A)}{\left(1-\left\|A^{-1} E\right\|\right)^{2}}
$$

where κ denotes the condition number with respect to linear solves.

