HW for 2019-11-04

(due: 2019-11-18)
You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

Consider $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ with A symmetric and b not an eigenvector, and define

$$
\phi(x)=\frac{1}{2} x^{T} A x-x^{T} b .
$$

We wish to minimize ϕ subject to the constraint $x^{T} x=1$, via the Lagrangian

$$
L(x, \mu)=\frac{1}{2} x^{T} A x-x^{T} b-\frac{\mu}{2}\left(x^{T} x-1\right) .
$$

1. Express x at a stationary point in terms of A, b, and μ.
2. Argue that the condition $\|x\|^{2}=1$, given the expression from the previous step, implies singularity of the matrix

$$
\left[\begin{array}{cc}
(A-\mu I)^{2} & b \\
b^{T} & 1
\end{array}\right]
$$

3. Eliminating the z variable in

$$
\left[\begin{array}{cc}
(A-\mu I)^{2} & b \\
b^{T} & 1
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=0
$$

show that μ satsifies the quadratic eigenvalue problem

$$
\left[\left(A^{2}-b b^{T}\right)-2 \mu A+\mu^{2} I\right] y=0 .
$$

Solving via polyeig gives us all possible μ in $O\left(n^{3}\right)$ time.
4. At the constrained minimizer, we must satisfy that $v^{T}(A-\mu I) v$ is positive for all v s.t. $v^{T} x=0$. Argue that this implies $\mu<\lambda_{2}(A)$, where $\lambda_{2}(A)$ is the second smallest eigenvalue of A.
5. Following the divide-and-conquer idea and the argument from the previous step, argue that ϕ has no more than three constrained minimizers.
6. Write a code to solve the problem, with the interface hw6solve(A, b) (returning the vector x). Please also write a test case to sanity check your solver!

