HW for 2019-10-28

(due: 2019-11-04)
You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

1: On the border Suppose the bordered matrix

$$
M(s)=\left[\begin{array}{cc}
A-s I & b \\
c^{T} & 0
\end{array}\right]
$$

is nonsingular, and consider the linear system

$$
\left[\begin{array}{cc}
A-s I & b \\
c^{T} & 0
\end{array}\right]\left[\begin{array}{l}
f(s) \\
g(s)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

- Show that $g(\lambda)=0$ iff λ is an eigenvalue of A.
- Modify the hw7newton code (Julia or MATLAB) to implement the Newton iteration

$$
\sigma_{k+1}=\sigma_{k}-g\left(\sigma_{k}\right) / g^{\prime}\left(\sigma_{k}\right)
$$

You should see quadratic convergence in the tester, as indicated by the $g\left(\sigma_{k+1}\right)$ having roughly the order of magnitude of $g\left(\sigma_{k}\right)^{2}$.

2: Real rotations Suppose $A \in \mathbb{R}^{n \times n}$ has a unique (algebraic multiplicity 1) complex conjugate pair of eigenvalues $\mu \exp (\pm \mathrm{i} \theta)=\alpha+\beta \mathrm{i}$ with maximal modulus ($\mu>|\lambda|$ for all other eigenvalues λ) and corresponding eigenvectors $u \pm v$ i. Show that power iteration from a random starting vector in \mathbb{R}^{n} gives the sequence

$$
v_{k} \approx u \cos (k \theta+\gamma)-v \sin (k \theta+\gamma)
$$

for large k.

3: Shifted solver Suppose $H \in \mathbb{R}^{n \times n}$ is given upper Hessenberg matrix. Write a QR-based solver that runs in $O\left(n^{2}\right)$ time to solve linear systems of the form $(H-\sigma I) x=b$. Your code should satisfy the interface in the class repository.

