## HW for 2019-09-30

(due: 2019-10-07)
You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

1: Tree falling The code tree_solve in the repository computes the solution to $A x=b$ where $A$ is a tree-structured symmetric positive definite matrix. Rewrite the reference code to run in $O(n)$ time.

2: Remove a row Suppose $A \in \mathbb{R}^{m \times n}$ is decomposed as

$$
A=\left[\begin{array}{l}
A_{1} \\
a_{2}
\end{array}\right], \quad A_{1} \in \mathbb{R}^{(m-1) \times n}, a_{2} \in \mathbb{R}^{1 \times n}
$$

and both $A$ and $A_{1}$ are rank $n$. Suppose we have an economy QR of $A$, show how to compute $\hat{x}=A_{1}^{\dagger} b_{1}$ in $O\left(n^{2}\right)$ time (no code is needed for this problem, just give the idea).

3: Pesky probability Supposing $Z$ is a standard normal random variable, find the degree 8 polynomial $p(z)$ that minimizes

$$
\phi(p)=E_{Z}\left[(p(Z)-\cos (Z))^{2}\right] .
$$

What is the optimal value of $\phi$ ? Please use the Gauss-Hermite quadrature code included in the repository (gausshq.m and gausshq.jl) to compute $E_{Z}[f(Z)]$ for any $f$ appearing in your computations.

