HW for 2019-09-09

(due: 2019-09-16)

You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

- **1:** Norm! Show the following for $A = xy^T$ with $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$:
 - $||A||_1 = ||x||_1 ||y||_\infty$
 - $||A||_{\infty} = ||x||_{\infty} ||y||_{1}$
 - $||A||_F = ||x||_2 ||y||_2$
 - $||A||_2 = ||x||_2 ||y||_2$
- **2:** Frobenius fun The Frobenius inner product over $\mathbb{R}^{m \times n}$ is

$$\langle X, Y \rangle_F = \sum_{i=1}^m \sum_{j=1}^n x_{ij} y_{ij} = \operatorname{tr}(Y^T X)$$

The associated norm (the Frobenius norm) is a consistent matrix norm, but not an operator norm.

- Argue that the Frobenius norm cannot be an operator norm. *Hint:* What is the Frobenius norm of the identity?
- Show that if H is symmetric $(H = H^T)$ and S is skew $S = -S^T$, then $\langle H, S \rangle_F = 0$. Argue that therefore $||H + S||_F^2 = ||H||_F^2 + ||S||_F^2$.
- Using the cyclic property of traces (tr(ABC) = tr(CAB) = tr(BCA)), show that

$$\langle AX, BY \rangle_F = \langle B^T A, YX^T \rangle_F,$$

assuming the dimensions of the matrices make sense.

3: Goodness gradients Write the directional derivative of $||Ax||^2$ as

$$\delta \left[\|Ax\|^2 \right] = (\delta x)^T g + \langle \delta A, G \rangle_F.$$