HW for 2019-09-09

(due: 2019-09-16)
You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

1: Norm! Show the following for $A=x y^{T}$ with $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$:

- $\|A\|_{1}=\|x\|_{1}\|y\|_{\infty}$
- $\|A\|_{\infty}=\|x\|_{\infty}\|y\|_{1}$
- $\|A\|_{F}=\|x\|_{2}\|y\|_{2}$
- $\|A\|_{2}=\|x\|_{2}\|y\|_{2}$

2: Frobenius fun The Frobenius inner product over $\mathbb{R}^{m \times n}$ is

$$
\langle X, Y\rangle_{F}=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} y_{i j}=\operatorname{tr}\left(Y^{T} X\right)
$$

The associated norm (the Frobenius norm) is a consistent matrix norm, but not an operator norm.

- Argue that the Frobenius norm cannot be an operator norm. Hint: What is the Frobenius norm of the identity?
- Show that if H is symmetric $\left(H=H^{T}\right)$ and S is skew $S=-S^{T}$, then $\langle H, S\rangle_{F}=0$. Argue that therefore $\|H+S\|_{F}^{2}=\|H\|_{F}^{2}+\|S\|_{F}^{2}$.
- Using the cyclic property of traces $(\operatorname{tr}(A B C)=\operatorname{tr}(C A B)=\operatorname{tr}(B C A))$, show that

$$
\langle A X, B Y\rangle_{F}=\left\langle B^{T} A, Y X^{T}\right\rangle_{F}
$$

assuming the dimensions of the matrices make sense.
3: Goodness gradients Write the directional derivative of $\|A x\|^{2}$ as

$$
\delta\left[\|A x\|^{2}\right]=(\delta x)^{T} g+\langle\delta A, G\rangle_{F} .
$$

