HW for 2019-08-30

(due: 2019-09-09)
You may (and should) talk about problems with each other and with me, providing attribution for any good ideas you might get. Your final write-up should be your own.

1: About you Tell me a few things about yourself:

- How do you prefer to be called?
- Why are you taking the class?
- Are there things you particularly hope to see?
- Do you have any concerns (about background, schedule, etc)?

2: A problem of performance Julia and Matlab support both sparse and dense matrix data structures, and they have different performance characteristics. For a variety of square matrices of size n and sparsity level s (where s is the fraction of entries that are nonzero), compare the speed of dense and sparse matrix-vector multiply. You may use As $=$ sparse(A) to make a sparse version of a dense matrix A. What do you observe about the relative performance of these options?

Note: If you want examples of how to write timing tests, Julia scripts will be added to the Matlab scripts already in the class repository.

3: Seeking structure Rewrite the following code fragment to run in $O(n)$ time (in Matlab; Julia code and tests at https://github.com/dbindel/ cs6210-f19/tree/master/hw/code).

```
\(\% \mathrm{u}, \mathrm{v}\), and x are length n
\(\mathrm{A}=\operatorname{eye}(\mathrm{n})+\mathrm{u}^{*} \mathrm{v}^{\prime}\);
\(\mathrm{y}=\mathrm{A}^{*} \mathrm{x}\);
\(\mathrm{z}=\mathrm{A}^{*} \mathrm{x}\);
\(\mathrm{d}=\operatorname{diag}(\mathrm{A})\);
\(\mathrm{df}=\operatorname{diag}(\) flipud \((\mathrm{A}))\);
\(\mathrm{t}=\operatorname{trace}(\mathrm{A})\);
c \(=\operatorname{det}(\mathrm{A})\);
```

Hint (last line): For any $X, Y \in \mathbb{R}^{n \times k}: \operatorname{det}\left(I+X Y^{T}\right)=\operatorname{det}\left(I+Y^{T} X\right)$.

