
CS 6210: Homework 4
Instructor: Anil Damle
Due: November 1, 2018

Policies

You may discuss the homework problems freely with other students, but please refrain from looking
at their code or writeups (or sharing your own). Ultimately, you must implement your own code
and write up your own solution to be turned in. Your solution, including supporting plots and
requested output from your code must be typeset and submitted via the CMS as a single pdf file.
Additionally, please submit any code written for the assignment via the CMS as well. This can be
done by either including it in your solution as an appendix, or uploading it as a zip file.

Question 1:

Let us assume that we are using a stationary iterative method to solve Ax = b with the splitting
A = M−N and initial guess x(0). Furthermore, assume that x(1), . . . , x(k) have been computed using
the iteration Mx(j+1) = Nx(j) + b. Normally we would consider x(k) as our current approximation
of the solution. However, maybe there is some process that allows us to accelerate the convergence
of our method.

Now, we are going to consider one specific way of accomplishing our goal. Specifically, we would

like to construct coefficients
{
v
(k)
j

}k
j=1

for each iteration k such that

y(k) =
k∑
j=0

v
(k)
j x(j)

gives a better approximation to our true solution, denoted x. Let us define G = M−1N and

pk(z) =
k∑
j=0

v
(k)
j zj

1. Let us further assume that pk(1) = 1. Prove that

y(k) − x = pk (G) e(0)

2. Prove that if B is similar to a Hermitian matrix then

ρ(pk(B)) = max
λi∈λ(B)

|pk(λi)|

where ρ(pk(B)) is the spectral radius of pk(B).

We now assume that the iteration matrix G is similar to a Hermitian matrix and has real
eigenvalues λ1, . . . , λn. Recall that for convergence we must have

−1 < λn ≤ λ1 < 1
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Moreover let α and β be such that

−1 < α ≤ λn ≤ · · · ≤ λ1 ≤ β < 1.

3. Since we may write ‖y(k) − x‖ = ‖pk(G)e(0)‖, what choice of pk would give us zero error? Is
such a choice feasible?

Since we may write
max

λi∈λ(B)
|pk(λi)| ≤ max

α≤λ≤β
|pk(λ)|,

it seems reasonable to pick a pk that is small on the interval [α, β]. The ideal choice, given the
constraint on pk(1), is a scaled and shifted version of the kth Chebyshev polynomial. These polyno-
mials may be defined by the recursion cj(z) = 2zcj−1(z)− cj−2(z) where c0(z) = 1 and c1(z) = z.
Alternatively, we may write cj(z) = cos (jθ) where θ = arccos (z). Specifically, we may choose our
polynomial to be

pk(z) =
ck

(
−1 + 2 z−αβ−α

)
ck(µ)

,

where µ = 1 + 2 1−β
β−α . You can verify that pk(1) = 1. Moreover, ck(z) has the property that it is

bounded between −1 and 1 in the interval [−1, 1], but then grows rapidly outside of this interval.
So for example, in the formula above, ck(µ) becomes large as k →∞. With the chosen scaling we
ensure that p(z) is small in the interval [α, β] while satisfying p(1) = 1.

4. Given the above choice for pk(z) prove that there exists a constant C such that

‖y(k) − x‖2 ≤ C
(

1

ck(µ)

)
‖x− x(0)‖2,

where C may depend on the matrix G.

5. Let α = −0.9 and β = 0.9. Plot ck(µ), on a logarithmic scale, for k = 0, 1, . . . , 100.

We will now consider using this acceleration method in conjunction with the Jacobi iteration.
For the remainder of this problem assume that A is a real symmetric matrix that is strictly diago-
nally dominant and has positive diagonal entries.

6. Under the aforementioned assumptions, prove that the iteration matrix associated with A is
similar to a Hermitian matrix.

7. Implement the Jacobi method both with and without Chebyshev acceleration. You can
find pseudo-code in Golub and Van Loan 4th edition, section 11.2.8 (3rd edition, section
10.1.5) that leverages the three-term recurrence for Chebyshev polynomials for an efficient
implementation.

The file probC.mat contains a matrix A, vectors x(0) and b and eigenvalue bounds α and
β. Use your algorithm both with and without the acceleration to solve Ax = b. You may
stop your algorithm when the 2 norm of the residual is less than 10−6 or you have run 1000
iterations. Provide error plots, on a logarithmic scale, of the 2 norm of the residual vs iteration
both with and without the acceleration. Comment on your observations.
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Question 2:

Here we will work out a proof we omitted in class and further characterize the behavior of Ak in
terms of its spectral radius.

• Prove that if ρ(A) < 1 then there exists a sub-multiplicative matrix norm ‖ · ‖ such that
‖A‖ < 1. Hint: start with the Schur decomposition and note that for any non-singular matrix
S and norm ‖ · ‖, ‖A‖S = ‖S−1AS‖ is also a norm.

• Given A ∈ Cn×n, a matrix norm ‖ · ‖, and some ε > 0 prove that there exist constants α
(depending on the norm) and βA,ε (depending on A, the norm, and ε) such that

αρ(A)k ≤ ‖Ak‖ ≤ βA,ε(ρ(A) + ε)k.

Question 3:

We are now going to prove some interesting properties of the Lanczos process and Krylov subspaces
as they relate to solving linear systems.

• Given a symmetric positive definite matrix A and vector b, prove that if the Lanczos process
breaks down at some point (i.e. βk = 0 using the notation from class and Trefethen and Bau)
then the subspace Kk(A, b) contains a solution to the linear system Ax = b.

• Given a symmetric positive definite matrix A with at most p distinct eigenvalues and a vector
b show that a solution to Ax = b exists in Kk(A, b) for some k ≤ p. In other words, we
certainly have a solution in the pth Krylov subspace, though we may find one sooner in some
special circumstances.
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