CS 6210 Take-Home Midterm:Comments

Average was 23.5 out of 30 , roughly $(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3)=(7.36,7.46,8.66)$. If you would like a letter grade interpretation: $\mathrm{A}=[25,30], \mathrm{B}=[18,20], \mathrm{C}=[12,15]$. Solution/test scripts on website. The fastest solution framework for P1 is outlined below. Only about 2 students were on the right track for that. But the problem was basically graded against the "obvious" divide and conquer strategy.

1 Fast Matrix Multiply

Some facts. First,

$$
\begin{aligned}
& \operatorname{tril}\left(S T^{T},-1\right)=\operatorname{tril}\left(S(:, 1) T(:, 1)^{T},-1\right)+\operatorname{tril}\left(S(:, 2) T(:, 2)^{T},-1\right) \\
& \quad \operatorname{triu}\left(T S^{T}, 1\right)=\operatorname{triu}\left(T(:, 1) S(:, 1)^{T}, 1\right)+\operatorname{triu}\left(T(:, 2) S(:, 2)^{T}, 1\right)
\end{aligned}
$$

Second, if $s, t \in \mathbb{R}^{5}$ then

$$
\begin{aligned}
\operatorname{tril}\left(s t^{T},-1\right) x & =\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
s_{2} t_{1} & 0 & 0 & 0 & 0 \\
s_{3} t_{1} & s_{3} t_{2} & 0 & 0 & 0 \\
s_{4} t_{1} & s_{4} t_{2} & s_{4} t_{3} & 0 & 0 \\
s_{5} t_{1} & s_{5} t_{2} & s_{5} t_{3} & s_{5} t_{4} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
s_{2} & 0 & 0 & 0 & 0 \\
s_{3} & s_{3} & 0 & 0 & 0 \\
s_{4} & s_{4} & s_{4} & 0 & 0 \\
s_{5} & s_{5} & s_{5} & s_{5} & 0
\end{array}\right]\left[\begin{array}{c}
t_{1} x_{1} \\
t_{2} x_{2} \\
t_{3} x_{3} \\
t_{4} x_{4} \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
s_{1}\left(t_{1} x_{1}\right) \\
s_{2}\left(t_{1} x_{1}+t_{2} x_{2}\right) \\
s_{3}\left(t_{1} x_{1}+t_{2} x_{2}+t_{3} x_{3}\right) \\
s_{4}\left(t_{1} x_{1}+t_{2} x_{2}+t_{3} x_{3}+t_{4} x_{4}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
s(1: n-1) . * \operatorname{cumsum}(t(1: n-1) . * x(1: n-1))
\end{array}\right]
\end{aligned}
$$

This is $O(n)$. Similarly

$$
\begin{aligned}
\operatorname{triu}\left(t s^{T}, 1\right) x & =\left[\begin{array}{ccccc}
0 & t_{1} s_{2} & t_{1} s_{3} & t_{1} s_{4} & t_{1} s_{5} \\
0 & 0 & t_{2} s_{3} & t_{2} s_{4} & t_{2} s_{5} \\
0 & 0 & 0 & t_{3} s_{4} & t_{3} s_{5} \\
0 & 0 & 0 & 0 & t_{4} s_{5} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
t_{1}\left(s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}+s_{5} x_{5}\right) \\
t_{2}\left(s_{3} x_{3}+s_{4} x_{4}+s_{5} x_{5}\right) \\
t_{3}\left(s_{4} x_{4}+s_{5} x_{5}\right) \\
t_{4}\left(s_{5} x_{5}\right) \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
t(1: n-1) . * \operatorname{flip}(\text { cumsum }(\operatorname{flip}(s(2: n) . * x(2: n)))) \\
0
\end{array}\right.
\end{aligned}
$$

This is $O(n)$ too. So overall we have

```
    function y = FastProdCVLO(d,S,T,x)
% d and x are column n vectors, S and T are n-by-2, n is a positive power of two.
% y = A*x where A = diag(d) + tril(S*T',-1) + triu(T*S',1)
n = length(d);
y = d.*x + ...
    [0;S(2:n,1).*cumsum(T(1:n-1,1).*x(1:n-1))] + ...
    [0;S(2:n,2).*cumsum(T(1:n-1,2).*x(1:n-1))] + ...
    [T(1:n-1,1).*flip(cumsum(flip(S(2:n,1).*x(2:n))));0] + ...
    [T(1:n-1,2).*flip(cumsum(flip(S(2:n,2).*x(2:n))));0];
```

