CS 6210 Take-Home Final Due: 12/17/15 (Thur) at Noon

You are not allowed to communicate with anybody about this exam. Aside from GVL4, properly cite all websites, papers, etc., if their content was directly use in your solution.

1 Sparse Orthogonal Matrix Set-Up

With the notation $e_{i}=I_{3}(:, i)$ here is a basis for the subspace of 3 x 3 symmetric matrices:

$$
\begin{aligned}
& S_{11}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=e_{1} e_{1}^{T} \\
& S_{21}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=e_{2} e_{1}^{T}+e_{1} e_{2}^{T} \\
& S_{31}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]=e_{3} e_{1}^{T}+e_{1} e_{3}^{T} \\
& S_{22}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=e_{2} e_{2}^{T} \\
& S_{32}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=e_{3} e_{2}^{T}+e_{2} e_{3}^{T} \\
& S_{33}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=e_{3} e_{3}^{T}
\end{aligned}
$$

and a basis for the subspace of 3 x 3 skew-symmetric matrices:

$$
\begin{aligned}
& T_{21}=\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=e_{2} e_{1}^{T}-e_{1} e_{2}^{T} \\
& T_{31}=\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]=e_{3} e_{1}^{T}-e_{1} e_{3}^{T} \\
& T_{32}=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]=e_{3} e_{2}^{T}-e_{2} e_{3}^{T}
\end{aligned}
$$

The matrix $Q_{3,3} \in \mathbb{R}^{9 \times 9}$ is obtained by normalizing these nine matrices so that they have unit Frobenius norm and then aggregating their vec's:

$$
\left.\begin{array}{rl}
Q_{3,3} & =\left[\operatorname{vec}\left(S_{11}\right)\right. \\
& \left.\operatorname{vec}\left(\alpha S_{21}\right) \operatorname{vec}\left(\alpha S_{31}\right) \operatorname{vec}\left(S_{22}\right) \operatorname{vec}\left(\alpha S_{32}\right) \operatorname{vec}\left(S_{33}\right) \mid \operatorname{vec}\left(\alpha T_{21}\right) \operatorname{vec}\left(\alpha T_{31}\right) \operatorname{vec}\left(\alpha T_{32}\right)\right] \\
& =\left[\begin{array}{rrrrrr|rrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & 0 & \alpha & 0 & 0 \\
0 & 0 & \alpha & 0 & 0 & 0 & 0 & \alpha & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 1 & 0 & 0 & -\alpha & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha & 0 & 0 & 0 & \alpha \\
0 & 0 & \alpha & 0 & 0 & 0 & 0 & -\alpha & 0 \\
0 & 0 & 0 & 0 & \alpha & 0 & 0 & 0 & -\alpha \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]=\left[Q_{\text {sym }} \mid Q_{\text {skew }}\right]
\end{array}\right]=1 / \sqrt{2} .
$$

This is a sparse orthogonal matrix.
For general $n, Q_{n, n}=\left[Q_{\text {sym }} Q_{\text {skew }}\right] \in \mathbb{R}^{n^{2} \times n^{2}}$. The columns of the n^{2}-by- $n(n+1) / 2$ matrix $Q_{\text {sym }}$ are associated the $S_{i j}$. The mapping of the (i, j) basis matrices $S_{i j}$ to the columns of $Q_{s y m}$ is as follows:

$$
(1,1),(2,1), \ldots,(n, 1),(2,2),(3,2), \ldots,(n, 2), \ldots,(n-1, n-1),(n, n-1),(n, n)
$$

The columns of the n^{2}-by- $n(n-1) / 2$ matrix $Q_{\text {skew }}$ are associated the $T_{i j}$. The mapping of the (i, j) basis matrices $T_{i j}$ to the columns of $Q_{\text {skew }}$ is as follows:

$$
(2,1),(3,1), \ldots,(n, 1),(3,2),(4,2), \ldots,(n, 2), \ldots,(n-1, n-1),(n, n-1)
$$

Implement the following Matlab function:

```
    function Q = Qnn(n)
% n is a positive integer
% Q is the n^2-by-n^2 orthogonal matrix Q_{n,n} in sparse format.
```

The efficiency of your implementation will be a major factor in the grading. Use sparse intelligently. Submit Qnn to CMS.

2 Closest Kronecker Product to a Block Tridiagonal Matrix

Suppose A is an n_{1}-by- n_{1} block matrix with n_{2}-by- n_{2} blocks, e.g.,

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]
$$

Consider the problem of minimizing

$$
\phi(B, C)=\|A-B \otimes C\|_{F}
$$

where $B \in \mathbb{R}^{n_{1} \times n_{1}}$ and $C \in \mathbb{R}^{n_{2} \times n_{2}}$. The solution procedure is outlined in GVL4 $\S 12.3 .6$. It involves computing the largest singular value and vectors of an n_{1}^{2}-by $-n_{2}^{2}$ matrix \tilde{A} whose rows are the vec's of the blocks, e.g.,

$$
\tilde{A}=\left[\begin{array}{c}
\operatorname{vec}\left(A_{11}\right)^{T} \\
\operatorname{vec}\left(A_{21}\right)^{T} \\
\operatorname{vec}\left(A_{31}\right)^{T} \\
\operatorname{vec}\left(A_{41}\right)^{T} \\
\operatorname{vec}\left(A_{12}\right)^{T} \\
\operatorname{vec}\left(A_{22}\right)^{T} \\
\operatorname{vec}\left(A_{32}\right)^{T} \\
\operatorname{vec}\left(A_{42}\right)^{T} \\
\operatorname{vec}\left(A_{13}\right)^{T} \\
\operatorname{vec}\left(A_{23}\right)^{T} \\
\operatorname{vec}\left(A_{33}\right)^{T} \\
\operatorname{vec}\left(A_{43}\right)^{T} \\
\operatorname{vec}\left(A_{14}\right)^{T} \\
\operatorname{vec}\left(A_{24}\right)^{T} \\
\operatorname{vec}\left(A_{34}\right)^{T} \\
\operatorname{vec}\left(A_{44}\right)^{T}
\end{array}\right] .
$$

In particular, if σ_{1} is the largest singular value of \tilde{A} and u_{1}, and v_{1} the left and right singular vectors, then

$$
B_{o p t}=\sqrt{\sigma_{1}} \cdot \operatorname{reshape}\left(u_{1}, n_{1}, n_{1}\right) \quad C_{o p t}=\sqrt{\sigma_{1}} \cdot \operatorname{reshape}\left(v_{1}, n_{2}, n_{2}\right)
$$

In this problem you are to implement this procedure for the case when A is block tridiagonal with sparse blocks:

```
    function [B,C] = NearestKP(A,n1,n2)
% A (in sparse format) is an n1-by-n1 block tridiagonal matrix with n2-by-n2 blocks.
% B (n1-by-n1) and C (n2-by-n2) minimize norm(A-kron(B,C),'fro') and are both
% in full format.
```

You may want to make use of svds and \tilde{A} 's special structure. Submit NearestKP to CMS.

3 A Max Trace Problem

Let $\operatorname{tr}(A)$ denote the trace of a square matrix $A \in \mathbb{R}^{n \times n}$:

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

Here are some facts about the trace function:

1. If $F, G \in \mathbb{R}^{n \times n}$, then $\operatorname{tr}(F+G)=\operatorname{tr}(F)+\operatorname{tr}(G)$.
2. If $\alpha \in \mathbb{R}$ and $F \in \mathbb{R}^{n \times n}$, then $\operatorname{tr}(\alpha F)=\alpha \operatorname{tr}(F)$.
3. If $F, G \in \mathbb{R}^{n \times r}$, then $\operatorname{tr}\left(F G^{T}\right)=\operatorname{tr}\left(G^{T} F\right)$.
4. If $A \in \mathbb{R}^{n \times n}$ is symmetric with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ and $U \in \mathbb{R}^{n \times r}$ has orthonormal columns, then

$$
\operatorname{tr}\left(U^{T} A U\right) \leq \lambda_{1}+\cdots+\lambda_{r}
$$

and the upper bound is attained if $\operatorname{ran}(U)$ is an invariant subspace associated with $\lambda_{1}, \ldots, \lambda_{r}$.

Implement a function $[Q, r, p h i M a x]=$ TwoMatTrace $(A 1, A 2)$ that maximizes the objective function

$$
\phi(Q, r)=\operatorname{tr}\left(Q_{1}^{T} A_{1} Q_{1}\right)+\operatorname{tr}\left(Q_{2}^{T} A_{2} Q_{2}\right) \quad Q_{1}=Q(:, 1: r), Q_{2}=Q(:, r+1: n)
$$

where $A_{1} \in \mathbb{R}^{n \times n}$ and $A_{2} \in \mathbb{R}^{n \times n}$ are given symmetric matrices, $Q \in \mathbb{R}^{n \times n}$ is orthogonal, and r is an integer that satisfies $0 \leq r \leq n$. To be clear about the "edge" cases:

$$
\phi(Q, 0)=\operatorname{tr}\left(Q^{T} A_{2} Q\right) \quad \phi(Q, n)=\operatorname{tr}\left(Q^{T} A_{1} Q\right)
$$

The optimum Q should be returned in Q, the optimum r should be returned in r, and phiMax should return the optimum value of ϕ. Submit TwoMatTrace to CMS.

4 Limiting Probabilities

Suppose $Q \in \mathbb{R}^{n \times n}$ has the property that its diagonal entries are negative, its off-diagonal entries are strictly positive, and its column sums are zero. It can be shown that if

$$
F(t)=e^{Q t}
$$

then regardless of t, all the entries in $F(t)$ are nonnegative and its column sums are one. That is, $F(t)$ is stochastic. Its entries are probabilities and the probabilities in each of its columns sum to one.

It can be shown that the diagonal entries in $e^{Q t}$ converge:

$$
\lim _{t \rightarrow \infty}[F(t)]_{i i}=p_{i} .
$$

Implement a function $\mathrm{p}=\mathrm{pLimits}(\mathrm{Q})$ that returns the column vector of limiting diagonal probabilities associated with $e^{Q t}$. You are NOT allowed to use expm. Submit pLimits to CMS.

5 A Fast Matrix-Vector Multiply

Suppose $p, q, x \in \mathbb{R}^{n}$ and set $A=\operatorname{triu}\left(p q^{T}\right)$. The matrix vector product $y=A x$ can be computed with $O(n)$ work and here is why:

$$
\begin{aligned}
y=A x & =\left[\begin{array}{cccc}
p_{1} q_{1} & p_{1} q_{2} & p_{1} q_{3} & p_{1} q_{4} \\
0 & p_{2} q_{2} & p_{2} q_{3} & p_{2} q_{4} \\
0 & 0 & p_{3} q_{3} & p_{3} q_{4} \\
0 & 0 & 0 & p_{4} q_{4}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{1} & p_{1} & p_{1} \\
0 & p_{2} & p_{2} & p_{2} \\
0 & 0 & p_{3} & p_{3} \\
0 & 0 & 0 & p_{4}
\end{array}\right]\left[\begin{array}{l}
q_{1} x_{1} \\
q_{2} x_{2} \\
q_{3} x_{3} \\
q_{4} x_{4}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
p_{1} & 0 & 0 & 0 \\
0 & p_{2} & 0 & 0 \\
0 & 0 & p_{3} & 0 \\
0 & 0 & 0 & p_{4}
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
q_{1} x_{1} \\
q_{2} x_{2} \\
q_{3} x_{3} \\
q_{4} x_{4}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
p_{1} & 0 & 0 & 0 \\
0 & p_{2} & 0 & 0 \\
0 & 0 & p_{3} & 0 \\
0 & 0 & 0 & p_{4}
\end{array}\right]\left[\begin{array}{rrrr}
1 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
q_{1} x_{1} \\
q_{2} x_{2} \\
q_{3} x_{3} \\
q_{4} x_{4}
\end{array}\right]
\end{aligned}
$$

You might want to review $\S 12.2 .1-12.2 .4$ in GVL4. Possibly using these ideas, implement the following function so that it performs as specified:

```
    function y = FastProd(P,Q,R,S,d,x)
% P,Q,R, and S are n-by-r, n is an integral multiple of r, and n>>r.
% d and x are column n-vectors
% y = Ax where A = tril( R*S',-1) + diag(d) + triu(P*Q',1)
```

Submit FastProd to CMS.

