CS 6210 Assignment 6 Due: 12/2/15 (Wed) at 11pm

Scoring for each problem is on a 0 -to- 5 scale ($5=$ complete success, $4=$ overlooked a small detail, $3=$ good job on half the problem, $2=\mathrm{OK}$ job on half the problem, $1=$ germ of a relevant solution idea, $0=$ missed the point of the problem.) Independent of this, one point will be deducted for insufficiently commented code. Test code and related material are posted on the course website http://www.cs.cornell.edu/courses/cs6210/2015fa/. All solution MFiles must be submitted through the CMS system. You are allowed to discuss background issues with other students, but the codes you submit must be your own.

Topics: Unsymmetric Eigenproblem, Real Schur Decomposition, Invariant Subspaces

1 Eigenvectors of $S T$

Complete the following function so that it performs as specified:

```
    function x = EvecProd(S,T,k)
% S and T are nxn upper triangular matrices and k is an integer with 1<=k<=n.
% Assume that the eigenvalues of ST are distinct, i.e., S(1,1)T(1,1),\ldots,S(n,n)T(n,n)
% are distinct.
% x is a unit 2-norm column vector so that S*T*x = lambda*x where lambda = S(k,k)T(k,)
```

A successful implementation will be $O\left(n^{2}\right)$ so this rules out any method that explicitly computes the upper triangular matrix product $S T$. Fortunately, it is possible to solve n-by- n linear systems of the form

$$
(\text { Upper Triangular Matrix }) \times(\text { Upper Triangular Matrix })-\mu I_{n}=\text { rhs }
$$

with $O\left(n^{2}\right)$ work. (See GVL4 Problem 3.1.5.). This is relevant for if

$$
S T=U=\left[\begin{array}{ccc}
U_{11} & w & U_{13} \\
0 & \lambda & v^{T} \\
0 & 0 & U_{33}
\end{array}\right]
$$

has square diagonal blocks and λ is not an eigenvalue of U_{11}, then

$$
U\left[\begin{array}{c}
\left(U_{11}-\lambda I\right)^{-1} w \\
-1 \\
0
\end{array}\right]=\lambda\left[\begin{array}{c}
\left(U_{11}-\lambda I\right)^{-1} w \\
-1 \\
0
\end{array}\right]
$$

Submit EvecProd to CMS.

2 Best 2-by-2

Suppose $A \in \mathbb{R}^{n \times n}$ and that $Q_{1} \in \mathbb{R}^{n \times 2}$ has orthonormal columns. If $\operatorname{ran}(Q)$ is an invariant subspace for A, then there exists $B \in \mathbb{R}^{2 \times 2}$ so that $A Q=Q B$. Each eigenvalue of B is an eigenvalue of A

If $\operatorname{ran}(X)$ is an approximate invariant subspace for A, then we wish to determine B so that $\|A X=X B\|_{F}$ is minimized. In this case the eigenvalues of B can regarded as approximate eigenvalues of A. Implement the following function so that it performs as specified

```
function B = Best2by2(A,X)
% A is nxn, X is nx2
% B is a 2x2 matrix that minimizes norm(AX-XB,'fro').
```

Submit Best2by2 to CMS.

3 Best n-by-2

If the eigenvalues of $B \in \mathbb{R}^{2 \times 2}$ are also eigenvalues of $A \in \mathbb{R}^{n \times n}$, then there exists a unit Frobenius norm matrix $X \in \mathbb{R}^{n \times 2}$ such that $A X=X B$. If the eigenvalues of B are almost eigenvalues of A, then there should be a matrix $X \in \mathbb{R}^{n \times 2}$ such that $\|A X-X B\|_{2}$ is small subject to the constraint that $\|X\|_{F}=1$. Implement the following function so that it performs as specified

```
function X = BestNby2(A,B)
% A is nxn, B is 2x2
% X is an nx2 matrix that minimizes norm(AX-XB,'fro') subject to norm(X,'fro') = 1.
```

Submit BestNby2 to CMS.

4 Structured Real Schur Decomposition

Read up on schur and ordschur and then implement the following function:

```
    function [U,T] = specialSchur(X,Y,order)
% X and Y are n-by-r matrices with r<n/2.
% U is orthogonal and U'*(X*Y')*U = T is the real Schur decomposition of XY'.
% If order = 'ascend' then the eigenvalues along the block diagonal of T are arranged
% in order of increasing real part.
% If order = 'descend' then the eigenvalues along the block diagonal of T are arranged
% in order of decreasing real part.
%
```

A good way to focus on efficiency issues is to consider the case $r \ll n$. Submit specialSchur to CMS.

