
CS 6210 Assignment 5 Due: 11/13/15 (Fri) at 6pm

Scoring for each problem is on a 0-to-5 scale ( 5 = complete success, 4 = overlooked a small detail, 3 = good job
on half the problem, 2 = OK job on half the problem, 1 = germ of a relevant solution idea, 0 = missed the point of
the problem.) Independent of this, one point will be deducted for insufficiently commented code. Test code and related
material are posted on the course website http://www.cs.cornell.edu/courses/cs6210/2015fa/. All solution M-
Files must be submitted through the CMS system. You are allowed to discuss background issues with other students,
but the codes you submit must be your own.

Topics: Eigenvalue Problems for symmetric, skew-symmetric and orthogonal matrices, Tridiagonal Methods,
Jacobi Methods, the Lanczos Method.

1 An Orthogonal Matrix Eigenvalue Problem

Complete the following function so that it performs as specified:

function k = nEigs(U,alfa,beta)

% U is an nxn real orthogonal matrix.

% If -1 < alfa < beta < 1, then k estimates the number of U’s eigenvalues that

% have real parts in the interval [alfa,beta].

% If alfa = beta = 1, then k estimates the number of U’s eigenvalues that

% are equal to one.

% If alfa = beta = -1, then k estimates the number of U’s eigenvalues that

% are equal to minus one.

% All other alfa-beta combinations are illegal, e.g., alfa = 0, beta = 1

Note that the eigenvalues of U are on the unit circle. It follows that if Uz = λz then (λ + 1/λ)/2 = Re(λ) is
an eigenvalue of A = (U + U−1)/2 = (U + UT )/2, a symmetric matrix. Make effective use of hess and the
Sturm sequence function nLess that is provided. To force issues, your implementation is NOT allowed to use
schur or eig or any other Matlab eigensolver. Throughout your implementation you are “allowed” to set a
matrix element to zero if its absolute value is 10−12 or less. An interesting way to generate test examples is
[U,R] = qr(randn(n,p)) with p<n. Submit nEigs to CMS.

2 3-by-3 Eigenvalue decomposition for Skew-Symmetric Matrices

If A ∈ IRn×n is skew-symmetric, then AT = −A and all its eigenvalues are on the imaginary axis. The real

Schur decomposition states that there is a real orthogonal matrix Q such that

QT AQ = diag(D1, . . . , Dp)

where each Dk is either the 1-by-1 matrix 0 or a 2-by-2 matrix of the form

Dk =

[

0 µk

−µk 0

]

Note that in the latter situation λ(Dk) = {+ i·µk, − i·µk}. Also observe that if n is odd then there must be a
nonzero real vector z so Az = 0. (Why?) Complete the following function so that it performs as specified:

function Q = RealSchur3(A)

% A is a 3x3 real skew-symmetric matrix.

% Q is a 3x3 orthogonal matrix so that Q’*A*Q has the form

% Q’*A*Q = [ 0 mu 0 ; -mu 0 0 ; 0 0 0]

Hint. Find a null vector z for A and a Householder matrix P that can zero all but one entry of z. What can
you say about the structure of P TAP ? You are not allowed to use eig or schur. You are free to use House

(see A4). Submit RealSchur3 to CMS.
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3 A Jacobi Procedure for Skew Symmetric Matrices

Read about the cyclic Jacobi idea in §8.5.4 and about the block Jacobi idea in §8.5.6. In this problem you are
to implement a cyclic block Jacobi procedure for skew-symmetric matrices:

function [Q,D,BlockOffTrace] = SkewJacobi(A,tol,MaxNumSweeps)

% A is an nxn skew symmetric matrix and n = 2m+1.

% Q is nxn orthogonal.

% D is nxn and block diagonal with 1x1 and 2x2 diagonal blocks.

% BlockOff(D) <= tol*norm(A,’fro’) where D = Q’*A*Q.

% BlockOffTrace is a column vector with the property that BlockOffTrace(k) is

% the value of BlockOff(A) after k-1 sweeps.

The procedure should be based on this blocking:

A =















A11 A12 · · · A1m A1,m+1

A21 A22 · · · A2m, A2,m+1

...
...

. . .
...

...
Am1 Am2 · · · Amm Am,m+1

Am+1,1 Am+1,2 · · · Am+1,m Am+1,m+1















.

The blocks A1,m+1, . . . , Am,m+1 are 2-by-1. The blocks Am+1,1, . . . , Am+1,m are 1-by-2. The block Am+1,m+1

is 1-by-1. All other blocks are 2-by-2.
If a 2-by-2 (block) subproblem involves a block from the last block column or block row, then a 3-by-3 real

Schur decomposition needs to be computed and you should use RealSchur3. If not, then a 4-by-4 real Schur
decomposition needs to be found and you should use the Matlab schur function.

After a sweep you should evaluate the comparison

BlockOff(A) ≡

√

∑

i 6=j

‖ Aij ‖
2

F
≤ tol · ‖ A ‖F

The iteration should terminate if this is true or if the number of completed sweeps equals MaxNumSweeps.
Submit SkewJacobi to CMS.

4 Eigenvalues of Diagonal + Rank-1 Via Lanczos

The eigenvalues (and eigenvectors) of a symmetric matrix that is diagonal-plus-rank-one is an O(n2) computa-
tion. See GVL4 §8.4.3. The method outlined there involves a highly-structured rational function whose roots
are the desired eigenvalues. In this problem you are to implement a Lanczos-based procedure for computing
specified subsets of the eigenvalues:

function eValues = SpecialEig(d,v,k,what)

% d is a column n-vector with distinct nonzero entries

% v is a column n-vector with nonzero entries

% k is a positive integer that satifies 1<=k<n

% Let A = diag(d) + vv’.

% If what equals ’SA’, then eValues is a column k-vector comprised

% of the k algebraically smallest eigenvalues of A.

% If what equals ’LA’, then eValues is a column k-vector comprised

% of the k algebraically largest eigenvalues of A.

% If what equals ’SM’, then eValues is a column k-vector comprised

% of the k smallest eigenvalues of A in magnitude

% If what equals ’LM’, then eValues is a column k-vector comprised

% of the k largest eigenvalues of A in magnitude.

% In each case, eValues(1) < eValues(2) < ... < eValues(k).

You are to make effective use eigs for all eigenvalue computations. Start with help eigs and figure out the
proper calling sequence. Submit SpecialEig to CMS. A test script P4Grade is available on the course website.
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